精英家教网 > 高中数学 > 题目详情
已知f(x)=
1+x2
1-x2

求证:(1)f(-x)=f(x);
(2)f(
1
x
)=-f(x)
分析:(1)利用f(x)=
1+x2
1-x2
求得f(-x)即可证得结论;
(2)利用f(x)=
1+x2
1-x2
求得f(
1
x
)即可证得结论f(
1
x
)=-f(x)
解答:证明:(1)∵f(x)=
1+x2
1-x2

f(-x)=
1+(-x)2
1-(-x)2
=
1+x2
1-x2

∴f(-x)=f(x);
(2)∵f(x)=
1+x2
1-x2

f(
1
x
)=
1+(
1
x
)
2
1-(
1
x
)
2
=-
1+x2
1-x2

f(
1
x
)=-f(x)
点评:本小题主要考查函数解析式的应用基础知识,考查运算求解能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(
x
+1)=x+2
,求函数f(x)的解析式;
(2)若二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1-x
+
x-1
,则它是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(
x
-1)=x+
x
,求函数f(x)的解析式.
(2)已知f(x)+2f(-x)=x2+2x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)证明f(x)在(0,+∞)上为增函数;
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案