精英家教网 > 高中数学 > 题目详情

已知抛物线C:y=x2,则抛物线C准线方程为:________.

y=-
分析:把抛物线C的方程化为标准方程,求出p值,依据开口方向写出准线方程.
解答:抛物线C:y=x2,即 x2 =y,∴p=,开口向上,故准线方程为y=-
故答案为 y=-
点评:本题考查抛物线标准方程以及简单性质的应用,把抛物线C的方程化为标准方程是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,已知抛物线C:y=3x2(x≥0)与直线x=a.直线x=b(其中0≤a≤b)及x轴围成的曲边梯形(阴影部分)的面积可以由公式S=b3-a3来计算,则如图2,过抛物线C:y=3x2(x≥0)上一点A(点A在y轴和直线x=2之间)的切线为l,S1是抛物线y=3x2与切线l及直线y=0所围成图形的面积,S2是抛物线y=3x2与切线l及直线x=2所围成图形的面积,求面积s1+s2的最小值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=2x2上的点A(-1,2),直线l1过点A且与抛物线相切.直线l2:x=a(a>-1)交抛物线于点B,交直线l1于点D,记△ABD的面积为S1,抛物线和直线l1,l2所围成的图形面积为S2,则S1:S2=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=ax2(a>0)的焦点到准线的距离为
1
4
,且C上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,并且x1x2=-
1
2
,那么m=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(大纲卷解析版) 题型:解答题

已知抛物线C:y=(x+1)2与圆M:(x-1)2+()2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.

(Ⅰ)求r;

(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

【2012高考真题全国卷理21】(本小题满分12分)(注意:在试卷上作答无效

已知抛物线C:y=(x+1)2与圆M:(x-1)2+()2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.

(Ⅰ)求r;

(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.

查看答案和解析>>

同步练习册答案