精英家教网 > 高中数学 > 题目详情

【题目】如图四棱锥PABCD底面ABCD为梯形PD⊥底面ABCDABCDADCDADAB1BC.

()求证:平面PBD⊥平面PBC

()HCD上一点满足2若直线PC与平面PBD所成的角的正切值为求二面角HPBC的余弦值

【答案】(Ⅰ)见解析;(Ⅱ) .

【解析】试题分析:(Ⅰ)通过勾股定理可得BCBD,利用面面垂直的判定定理即得结论;
(Ⅱ)通过题意以D为原点,DA、DC、DP分别为x、y、z轴建立坐标系,所求二面角的余弦值即为平面HPB的一个法向量与平面PBC的一个法向量的夹角的余弦值,计算即可.

试题解析:

(Ⅰ)证明:由ADCDABCDADAB=1BD

BC,∴CD=2,∴BCBD,因为PD⊥底面ABCD,∴BCPD.

因为PDBDD,所以BC⊥平面PBD,所以平面PBD⊥平面PBC.

(Ⅱ)由(Ⅰ)可知∠BPCPC与底面PBD所成的角.

所以tan∠BPC

所以PBPD=1,又=2CD=2,

可得CHDH.

D点为坐标原点,DADCDP分别xyz轴建立空间坐标系,则B(1,1,0),P(0,0,1),C(0,2,0),H.

设平面HPB的法向量为n=(x1y1z1),

则由n=(1,-3,-2),

设平面PBC的法向量为m=(x2y2z2),

则由m=(1,1,2).

所以cos〈m·n〉==-,所以二面角HPBC余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:

总计

走天桥

40

20

60

走斑马线

20

30

50

总计

60

50

110

,算得
参照独立性检验附表,得到的正确结论是(
A.有99%的把握认为“选择过马路的方式与性别有关”
B.有99%的把握认为“选择过马路的方式与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期为π,且f( )=

(1)求ω和φ的值;
(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A、B、C的对边分别为a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,曲线 的参数方程为 为参数),以原点 为极点,以 轴正半轴为极轴,建立极坐标系,曲线 的极坐标方程为
(1)求曲线 的普通方程与曲线 的直角坐标方程;
(2)试判断曲线 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},则S∩(UT)=(
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 是参数)和定点 , F1 , F2 是圆锥曲线的左、右焦点.
(1)求经过点 F2 且垂直于直线 AF1 的直线 l 的参数方程;
(2)设 P 为曲线 C 上的动点,求 P 到直线 l 距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和等边三角形中, ,平面平面

(1)在上找一点,使,并说明理由;

(2)在(1)的条件下,求平面与平面所成锐二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MACPA=PD=,AB=4.

(I)求证:MPB的中点;

(II)求二面角B-PD-A的大小;

(III)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

同步练习册答案