【题目】在直角坐标系 中,曲线 的参数方程为 ( 为参数),以原点 为极点,以 轴正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(1)求曲线 的普通方程与曲线 的直角坐标方程;
(2)试判断曲线 与 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ .
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为 ,求a的值;
(3)若f(x)>x2在(1,+∞)上恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向左平移 个单位,这时对应于这个图象的解析式为( )
A.y=cos2x
B.y=﹣sin2x
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为 和 (a,b,c,d∈N*),则 是x的更为精确的不足近似值或过剩近似值.我们知道π=3.14159…,若令 <π< ,则第一次用“调日法”后得 是π的更为精确的过剩近似值,即 <π< ,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)请用茎叶图表示这两组数据;
(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(3)现要从中选派一人参加9月份的全国数学联赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为梯形,PD⊥底面ABCD,AB∥CD,AD⊥CD,AD=AB=1,BC=.
(Ⅰ)求证:平面PBD⊥平面PBC;
(Ⅱ)设H为CD上一点,满足=2,若直线PC与平面PBD所成的角的正切值为,求二面角H-PB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数是同一函数的是( )
①f(x)= 与g(x)=x ;
②f(x)=|x|与g(x)= ;
③f(x)=x0与g(x)= ;
④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.
A.①②③
B.①③④
C.②③④
D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:函数f(x)对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当0<x< 时,不等式f(x)+3<2x+a恒成立;Q:当x∈[﹣2,2]时,g(x)=f(x)﹣ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩RB(R为全集).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com