精英家教网 > 高中数学 > 题目详情
根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:①输入数据x∈A,计算出x=f(x);②若x1∉A,则数列发生器结束工作;若x1∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1),依次规律继续下去.若集合A={x|0<x<1},
(Ⅰ)求证:x∈A时,f(x)∈A.
(Ⅱ)求证:对任意x∈A,此数列发生器都可以产生一个无穷数列去{xn}
(Ⅲ)若,记(n∈N*),求数列{an}的通项公式.
【答案】分析:(Ⅰ)当x∈A,即0<x<1时,由m∈N*,知m+1-x>0.所以,由,能够证明f(x)∈A.
(Ⅱ)由(Ⅰ)知,对任意x∈A,有x1=f(x)∈A,由x1∈A,可得x2=f(x1)∈A,由x2∈A,可得x3=f(x2)∈A,
依此规律继续下去,此数列发生器都可以产生一个无穷数列{xn}.
(Ⅲ)由,得.所以,因为,所以{an-1}是首项为,公比为的等比数列.由此能求出数列{an}的通项公式.
解答:(Ⅰ)证明:当x∈A,即0<x<1时,
∵m∈N*
∴m+1-x>0.



∴f(x)∈A.
(Ⅱ)证明:由(Ⅰ)知,对任意x∈A,有x1=f(x)∈A,
由x1∈A,可得x2=f(x1)∈A,
由x2∈A,可得x3=f(x2)∈A,
依此规律继续下去,此数列发生器都可以产生一个无穷数列{xn}.
(Ⅲ)解:由
可得



∴{an-1}是首项为,公比为的等比数列.


点评:本题首先考查数列与函数的综合运用,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,仔细解答,注意构造法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:①输入数据x0∈A,计算出x1=f(x0);②若x1∉A,则数列发生器结束工作;若x1∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1),并依此规律继续下去.若集合A={x|0<x<1}},f(x)=
mx
m+1-x
(m∈N*).
(理)(1)求证:对任意x0∈A,此数列发生器都可以产生一个无穷数列{xn};
(2)若x0=
1
2
,记an=
1
xn
(n∈N*),求数列{an}的通项公式;
(3)在(2)的条件下,证明:3≤am<4(n∈N*).
(文)(1)求证:对任意x0∈A,此数列发生器都可以产生一个无穷数列{xn};
(2)若m=1,求证:数列{xn}单调递减;
(3)若x0=
1
2
,记an=
1
xn
(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•眉山一模)根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:①输入数据x0∈A,计算出x=f(x0);②若x1∉A,则数列发生器结束工作;若x1∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1),依次规律继续下去.若集合A={x|0<x<1},f(x)=
mx
m+1-x
(m∈N*)

(Ⅰ)求证:x∈A时,f(x)∈A.
(Ⅱ)求证:对任意x0∈A,此数列发生器都可以产生一个无穷数列去{xn}
(Ⅲ)若x0=
1
2
,记an=
1
xn
(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)根据定义在集合A上的函数y=f(x),构造一个数列发生器,其工作原理如下:
①输入数据x0∈A,计算出x1=f(x0);
②若x0∉A,则数列发生器结束工作;
若x0∈A,则输出x1,并将x1反馈回输入端,再计算出x2=f(x1).并依此规律继续下去.
现在有A={x|0<x<1},f(x)=
mx
m+1-x
(m∈N*).
(1)求证:对任意x0∈A,此数列发生器都可以产生一个无穷数列{xn};
(2)若x0=
1
2
,记an=
1
xn
(n∈N*),求数列{an}的通项公式;
(3)在得条件下,证明
1
4
xm
1
3
(m∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年宣武区质量检一)(14分)

根据定义在集合A上的函数y=,构造一个数列发生器,其工作原理如下:

①     输入数据,计算出

②     若,则数列发生器结束工作;

,则输出,并将反馈回输入端,再计算出。并依此规律继续下去。

现在有

(1)       求证:对任意,此数列发生器都可以产生一个无穷数列

(2)       若,记,求数列的通项公式;

(3)       在(2)得条件下,证明

查看答案和解析>>

同步练习册答案