精英家教网 > 高中数学 > 题目详情
已知f(x)=1+sin
π2
x
,则f(1)+f(2)+f(3)+…+f(2009)=
 
分析:分别把x=1,2,3,…,2009代入f(x)求出各项,除过2009个1外,根据诱导公式和特殊角的三角函数值可得:从sin
π
2
开始每连续的四个正弦值相加为0,因为2009除以4余数是1,所以把最后一项的sin(
2009π
2
)利用诱导公式求出值即可得到原式的值.
解答:解:由f(x)=1+sin
π
2
x

则f(1)+f(2)+f(3)+…+f(2009)
=1+sin
π
2
+1+sinπ+1+sin
2
+1+sin2π+1+sin
2
+…+1+sin
2009π
2

=2009+(sin
π
2
+sinπ+sin
2
+sin2π)+(sin
2
+sin3π+sin
2
+sin4π)+…+(sin
2005π
2
+sin1003π+sin
2007π
2
+sin1004π)
+sin
2009π
2
=2009+(sin
π
2
+sinπ+sin
2
+sin2π)+(sin
π
2
+sinπ+sin
2
+sin2π)+…+(sin
π
2
+sinπ+sin
2
+sin2π)+sin
2009π
2

=2009+0+0+…+0+sin(2×502π+
π
2

=2009+1
=2010
故答案为:2010
点评:此题是一道基础题,要求学生灵活运用诱导公式化简求值,牢记特殊角的三角函数值.做题时要找出每四项的正弦值为0这个规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=cosx(
3
sinx+cosx)

(1)当x∈[0,
π
2
]
,求函数f(x)的最大值及取得最大值时的x;
(2)若b、c分别是锐角△ABC的内角B、C的对边,且b•c=
6
-
2
,f(A)=
1
2
,试求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城一模)已知f(x)=(2+
x
)n
,其中n∈N*
(1)若展开式中含x3项的系数为14,求n的值;
(2)当x=3时,求证:f(x)必可表示成
s
+
s-1
(s∈N*)的形式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
m
n
,设ω>0,
m
=(sinω x+cosω x, 
3
cosω x)
n
=(cosω x-sinω x,  2sinω x)
,若f(x)图象中相邻的两条对称轴间的距离等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,a=
3
S△ABC=
3
2
.当f(A)=1时,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(coswx,sinwx)
n
=(coswx,
3
coswx)
,其中0<w<2,函数f(x)=
m
n
-
1
2
,直线x=
π
6
为其图象的一条对称轴.
(Ⅰ)求函数f(x)的表达式及其单调递减区间;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,已知f(
A
2
)=1
,b=2,S△ABC=2
3
,求a值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
m
n
,设ω>0,
m
=(sinω x+cosω x, 
3
cosω x)
n
=(cosω x-sinω x,  2sinω x)
,若f(x)图象中相邻的两条对称轴间的距离等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,a=
3
S△ABC=
3
2
.当f(A)=1时,求b,c的值.

查看答案和解析>>

同步练习册答案