精英家教网 > 高中数学 > 题目详情
14.函数y=($\frac{1}{2}$)${\;}^{2x-{x}^{2}}$(x∈[-4,7])的单调递减区间是[-4,1].

分析 设t=-x2+2x,利用换元法结合复合函数单调性之间的关系进行求解即可.

解答 解:设t=-x2+2x,则t=-(x-1)2+1,
对称轴为x=1,
则y=($\frac{1}{2}$)t为减函数,
要求函数y=($\frac{1}{2}$)${\;}^{2x-{x}^{2}}$的单调减区间,即求函数t=-x2+2x的单调递增区间,
当-4≤x≤1时,函数t=-x2+2x为增函数,
则函数y=($\frac{1}{2}$)${\;}^{2x-{x}^{2}}$(x∈[-4,7])的单调递减区间是[-4,1],
故答案为:[-4,1]

点评 本题主要考查函数单调区间的求解,利用换元法结合复合函数单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|0≤x-m≤3},B={x|<0或x>3},试分别求出满足下列条件的实m的取值范围.
(Ⅰ)A∩B=Φ;
(Ⅱ)A∪B=B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解下列不等式:
(1)4|3x-1|-1≤0;               
(2)2|2x-1|>1;
(3)|x-1|+|x-3|≤4;              
(4)|x+10|-|x-2|≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地区有100户农民,都从事水产养殖.据了解,平均每户的年收入为3万元.为了调整产业结构,当地政府决定动员部分农民从事水产加工.据估计,如果能动员x(x>0)户农民从事水产加工,那么剩下的继续从事水产养殖的农民平均每户的年收入有望提高2x%,而从事水产加工的农民平均每户的年收入将为$3(a-\frac{3x}{50})(a>0)$万元.
(1)在动员x户农民从事水产加工后,要使从事水产养殖的农民的总年收入不低于动员前从事水产养殖的农民的总年收入,求x的取值范围;
(2)若0<x≤25,要使这100户农民中从事水产加工的农民的总年收入始终不高于从事水产养殖的农民的总年收入,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,△BC中,AB>AC,点D、E分别在边AB、AC上,且BD=CE,∠BAC的外角平分线与△ADE的外接圆交于A、P两点.求证:A、P、B、C四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=($\frac{1}{3}$)${\;}^{{x}^{2}-2x}$的单调区间,并指出其单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某学校高二学生进行研究性学习,某班共有m(m∈N*)名学生编号为1、2、3…m,有n(n∈N*)台设备编号分别为1、2、3…n,定义记号aij;如果第i名学生操作了第j台设备,此时规定aij=1否则aij=0,则等式a41+a42+a43+…a4n=3的实际意义为(  )
A.第4名学生操作了n台设备B.第4名学生操作了3台设备
C.第3名学生操作了n台设备D.第3名学生操作了4台设备

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.讨论函数f(x)=a${\;}^{{x}^{2}-2x-1}$(a>0且a≠1)的奇偶性和单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示直角梯形ABCD中,∠BAD=∠ADC=90°,∠ACD=60°,AB=3DC=3,若线段BC上存在点E,使得AC、AE、AB成等比数列,则$\frac{CE}{CB}$等于(  )
A.$\frac{1+\sqrt{15}}{7}$B.$\frac{6-\sqrt{15}}{7}$C.$\frac{\sqrt{87}-9}{7}$D.$\frac{18-\sqrt{87}}{7}$

查看答案和解析>>

同步练习册答案