精英家教网 > 高中数学 > 题目详情
已知一扇形的半径为2,面积为4,则此扇形圆心角的绝对值为
 
弧度.
考点:扇形面积公式
专题:
分析:设扇形的弧长为l,根据扇形的半径和面积,利用扇形面积公式列式算出l=4,再由弧度的定义加以计算,即可得到该扇形的圆心角的弧度数.
解答: 解:设扇形的圆心角的弧度数是α,弧长为l
∵扇形的半径长r=2,面积S=4,
∴S=
1
2
lr,即4=
1
2
×l×2,解之得l=4
因此,扇形圆心角的弧度数是α=
l
r
=
4
2
=2.
故答案为:2.
点评:本题给出扇形的半径和面积,求圆心角的大小.考查了扇形的面积公式和弧度制的定义等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)左右顶点,B(2,0)过椭圆C的右焦点F的直线交椭圆与M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列,T(
1
4
,0)点是定点
(1)求椭圆C的方程;
(2)求三角形MNT面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列5个命题:
①函数y=|sin(2x-
π
12
)|的最小正周期
π
2
是;
②直线x=
12
是函数y=2sin(3x-
π
4
)的一条对称轴;
③函数y=
1
2
sin2x-x有三个零点;
④若sinα+cosα=-
1
5
,且α为第二象限角,则tanα=
3
4

⑤函数y=cos(2x-3)在区间(
2
3
,3)上单调递减.
其中正确的是
 
(填出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-
y2
9
=1
的渐近线方程是(  )
A、y=±
2
3
x
B、y=±
3
2
x
C、y=±
4
9
x
D、y=±
9
4
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点作垂直x轴的直线与椭圆有四个交点,这四个交点恰好为正方形的四个顶点,则椭圆的离心率为(  )
A、
5
+1
2
B、
5
-1
2
C、
3
-1
2
D、
3
+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有3个红球和5个黑球,大小形状一样,一次性从中摸出两个球,
(Ⅰ)摸出的两个球均为红球的概率
(Ⅱ)摸出的两个球颜色不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x-1≤0
y-1≤0
x+y-1≥0.
则目标函数z=(
1
4
)x•(
1
2
)y
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的长轴长为10,一个焦点坐标为(4,0),则它的标准方程为(  )
A、
x2
5
+
y2
3
=1
B、
x2
25
+
y2
9
=1
C、
y2
25
+
x2
9
=1
D、
y2
5
+
x2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(2a-1)x-3
(Ⅰ)当a=2时,若∈[-2,3],求函数f(x)的值域;
(Ⅱ)若函数f(x)在[-2,3]上的最小值为g(a).
①求函数g(a)的表达式;
②是否存在实数a,使得g(a)=1,若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案