已知椭圆
的方程为
,点
分别为其左、右顶点,点
分别为其左、右焦点,以点
为圆心,
为半径作圆
;以点
为圆心,
为半径作圆
;若直线
被圆
和圆
截得的弦长之比为
;
(1)求椭圆
的离心率;
(2)己知
,问是否存在点
,使得过
点有无数条直线被圆
和圆
截得的弦长之比为
;若存在,请求出所有的
点坐标;若不存在,请说明理由.
![]()
解:(1)由
,得直线
的倾斜角为
,
则点
到直线
的距离
,
故直线
被圆
截得的弦长为
,
直线
被圆
截得的弦长为
, (3分)
据题意有:
,即
, (5分)
化简得:
,
解得:
或
,又椭圆的离心率
;
故椭圆
的离心率为
.(7分)
(2)假设存在,设
点坐标为
,过
点的直线为
;
当直线
的斜率不存在时,直线
不能被两圆同时所截;
故可设直线
的方程为
,
则点
到直线
的距离
,
由(1)有
,得
=
,
故直线
被圆
截得的弦长为
, (9分)
则点
到直线
的距离
,
,故直线
被圆
截得的弦长为
, (11分)
据题意有:
,即有
,整理得
,
即![]()
,两边平方整理成关于
的一元二次方程得
, (13分)
关于
的方程有无穷多解,
故有:
,
故所求点
坐标为(-1,0)或(-49,0).
(16分)
(注设过P点的直线为
后求得P点坐标同样得分)
【解析】略
科目:高中数学 来源: 题型:
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届山东省聊城市高二第四次模块检测理科数学卷(解析版) 题型:解答题
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com