【题目】某地区现有一个直角梯形水产养殖区ABCD,∠ABC=90°,AB∥CD,AB=800m,BC=1600m,CD=4000m,在点P处有一灯塔(如图),且点P到BC,CD的距离都是1200m,现拟将养殖区ACD分成两块,经过灯塔P增加一道分隔网EF,在△AEF内试验养殖一种新的水产品,当△AEF的面积最小时,对原有水产品养殖的影响最小.设AE=d.
![]()
(1)若P是EF的中点,求d的值;
(2)求对原有水产品养殖的影响最小时的d的值,并求△AEF面积的最小值.
【答案】(1)480
; (2)对原有水产品养殖的影响最小时,d=480
.△AEF面积的最小值为192000m2
【解析】
(1)建立平面坐标系,求出直线AD,AC的方程,根据P为EF的中点列方程得出E点坐标,从而可计算d;
(2)根据基本不等式得出AEAF的最小值,进而求出△AEF的面积最小值.
解:(1)以A为坐标原点,AB所在直线为x轴,建立如图所示的平面直角坐标系,
![]()
则C(800,1600),B(800,0),P(-400,400),D(-3200,1600).
AC所在直线方程为y=2x,AD所在直线方程为y=-
x.
设E(-2m,m),F(n,2n),m>0,>0.
∵P是EF的中点,∴
,解得
,
∴E(-960,480),
∴d=|AE|=
=480
.
(2)∵EF经过点P,∴kPE=kPF,
即
=
,化简得80m+240n=mn.
由基本不等式得:mn=80m+240n≥160
,
即mn≥76800,当且仅当m=3n=480时等号成立.
∵kACkAD=-1,∴AC⊥AD,
∴S△AEF=
AEAF=
m
n=
mn≥
76800=192000,
此时E(-960,480),d=AE=480
.
故对原有水产品养殖的影响最小时,d=480
.△AEF面积的最小值为192000m2.
科目:高中数学 来源: 题型:
【题目】已知函数
;
(1)当
时,若
,求
的取值范围;
(2)若定义在
上的奇函数
满足
,且当
,
,求
在
上的解析式;
(3)对于(2)中的
,若关于
的不等式
在
上恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知
平面
,且四边形
为直角梯形,
,
,
.
![]()
(1)证明:
;
(2)求平面
与平面
所成锐二面角的余弦值;
(3)点
是线段
上的动点,当直线
与
所成的角最小时,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx+c(a>0),且f(1)
.
(1)求证:函数f(x)有两个不同的零点;
(2)设x1,x2是函数f(x)的两个不同的零点,求|x1﹣x2|的取值范围;
(3)求证:函数f(x)在区间(0,2)内至少有一个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
有两个不等的实数根,求
的取值范围;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的差不超过1,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,已知
,且2an+1=an+1(n∈N*).
(1)求证:数列{an-1}是等比数列;
(2)若bn=nan,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,直线
分别交
轴、
轴的正半轴于
、
两点,
为坐标原点.
(1)若直线
方程为
(
),且
,求
的值;
(2)若直线
经过点
,设
的斜率为
,
为线段
的中点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个长方体的容器中,里面装有少量的水,现在将容器绕着其底部的一条棱倾斜.
(1)在倾斜的过程中,水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?
(2)在倾斜的过程中,水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?
(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底面的一个顶点,上面的第(1)问和第(2)问对不对?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com