【题目】已知函数
;
(1)当
时,若
,求
的取值范围;
(2)若定义在
上的奇函数
满足
,且当
,
,求
在
上的解析式;
(3)对于(2)中的
,若关于
的不等式
在
上恒成立,求实数
的取值范围.
【答案】(1)
;(2)
;(3)![]()
【解析】
(1)根据对数函数的真数部分大于0,及对数的运算性质,可将不等式化为
,且
且
,解不等式组可得
的取值范围;
(2)利用奇偶性得出
,
,转化得出当
时,
,当
时,根据函数的奇偶性求解即可.
(3)关于
的不等式关于
的不等式
在
上恒成立,等价于
在
上恒成立,即![]()
,分类讨论后,综合讨论结果,可得实数
的取值范围.
解:(1)原不等式可化为
,
,且
,且
,
得
.
(2)
,
,
所以
的周期为:4,
当
时,
,
当
时,
,
定义在
上的奇函数
,
,即
,
当
时,
,
当
时,
,
当
时,
,
(3)
关于
的不等式
在
上恒成立,
记
,
关于
的不等式
在
上恒成立,
在
上恒成立,
当
时,
,
![]()
,即
解得
.
当
,即
时,
,
,即
满足条件;
当
时,
,
由
在
上恒成立,
得
,
解得
.
综上所述,实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量
(单位:焦耳)与地震里氏震级
之间的关系为
.
(1)已知地震等级划分为里氏
级,根据等级范围又分为三种类型,其中小于
级的为“小地震”,介于
级到
级之间的为“有感地震”,大于
级的为“破坏性地震”若某次地震释放能量约
焦耳,试确定该次地震的类型;
(2)2008年汶川地震为里氏
级,2011年日本地震为里氏
级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍? (取
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:y=
x+4,动圆⊙O:x2+y2=r2(1<r<2),菱形ABCD的一个内角为60°,顶点A、B在直线l上,顶点C、D在⊙O上.当r变化时,求菱形ABCD的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某辆汽车以
千米
小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求
时,每小时的油耗(所需要的汽油量)为
升,其中
为常数,且
.
(1)若汽车以120千米
小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求
的取值范围;
(2)求该汽车行驶100千米的油耗的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线y=ax+1和抛物线y2=4x相交于不同的A,B两点.
(Ⅰ)若a=-2,求弦长|AB|;
(Ⅱ)若以AB为直径的圆经过原点O,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,(
,
,
)的部分图像如图所示.
![]()
(1)求函数
的解析式及
图像的对称轴方程;
(2)把函数
图像上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移
个单位,得到函数
的图象,求关于x的方程
在
时所有的实数根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
,
,…,
是一个数列,对每个
,
,
.如果
,
两数不同,写
;如果
,
两数相同,写
.于是得到一个新数列
,
,…,
,其中
.重复上述方法,得到一个由0及1两个数字组成的三角形数表,最后一行仅一个数字,求这张数字表中1的和的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】类似于平面直角坐标系,定义平面斜坐标系:设数轴
、
的交点为
,与
、
轴正方向同向的单位向量分别是
、
,且
与
的夹角为
,其中
,由平面向量基本定理:对于平面内的向量
,存在唯一有序实数对
,使得
,把
叫做点
在斜坐标系
中的坐标,也叫做向量
在斜坐标系
中的坐标,记为
,在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如
时,方程
表示斜坐标系内一条过点
,且方向向量为
的直线.
![]()
(1)若
,
,
,求
;
(2)若
,已知点
和直线
;
①求
的一个法向量;
②求点
到直线
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区现有一个直角梯形水产养殖区ABCD,∠ABC=90°,AB∥CD,AB=800m,BC=1600m,CD=4000m,在点P处有一灯塔(如图),且点P到BC,CD的距离都是1200m,现拟将养殖区ACD分成两块,经过灯塔P增加一道分隔网EF,在△AEF内试验养殖一种新的水产品,当△AEF的面积最小时,对原有水产品养殖的影响最小.设AE=d.
![]()
(1)若P是EF的中点,求d的值;
(2)求对原有水产品养殖的影响最小时的d的值,并求△AEF面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com