【题目】已知直线l:y=
x+4,动圆⊙O:x2+y2=r2(1<r<2),菱形ABCD的一个内角为60°,顶点A、B在直线l上,顶点C、D在⊙O上.当r变化时,求菱形ABCD的面积S的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数
(a为实常数).
![]()
(1)若
,作函数
的图象并写出单调减区间;
(2)当
时,设
在区间
上的最小值为
,求
的表达式;
(3)当
时对于函数
和函数
,若对任意的
,总存在
使
成立,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a、b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,过点
的圆的圆心C在x轴上,且与过原点倾斜角为30°的直线l相切.
(1)求圆C的标准方程;
(2)求直线
被圆C截得的弦长;
(3)点P在直线m:
上,过点P作⊙C的切线PM、PN,切点分别为M、N,求经过P、M、N、C四点的圆所过的定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
;
(1)当
时,若
,求
的取值范围;
(2)若定义在
上的奇函数
满足
,且当
,
,求
在
上的解析式;
(3)对于(2)中的
,若关于
的不等式
在
上恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知
平面
,且四边形
为直角梯形,
,
,
.
![]()
(1)证明:
;
(2)求平面
与平面
所成锐二面角的余弦值;
(3)点
是线段
上的动点,当直线
与
所成的角最小时,求线段
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com