精英家教网 > 高中数学 > 题目详情

【题目】已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(),由此点到相邻最低点间的曲线与x轴交于点(π,0),φ∈(﹣).

(1)求这条曲线的函数解析式;

(2)写出函数的单调区间.

【答案】(1)y=sin(x+);(2)[4kπ+,4kπ+],k∈Z.

【解析】解:(1)由题意可得A==,求得ω=

再根据最高点的坐标为(),可得sin(×+φ)=,即sin(×+φ)=1 ①.

再根据由此最高点到相邻最低点间的曲线与x轴交于点(π,0),可得得sin(×+φ)=0,即sin(+φ)=0 ②,

由①②求得φ=,故曲线的解析式为y=sin(x+).

(2)对于函数y=sin(x+),令2kπ﹣+≤2kπ+,求得4kπ﹣≤x≤4kπ+

可得函数的增区间为[4kπ﹣,4kπ+],k∈Z.

令2kπ++≤2kπ+,求得4kπ+≤x≤4kπ+

可得函数的减区间为[4kπ+,4kπ+],k∈Z.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有4个不同的球,4个不同的盒子,把球全部放入盒子内.

(1)共有几种放法?

(2)恰有1个空盒,有几种放法?

(3)恰有2个盒子不放球,有几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】截止到1999年底,我国人口约为13亿,若今后能将人口平均增长率控制在1%,经过x年后,我国人口为y(单位:亿)

(1)yx的函数关系式yf(x)

(2)求函数yf(x)的定义域;

(3)判断函数f(x)是增函数还是减函数,并指出函数增减的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张师傅想要一个如图1所示的钢筋支架的组合体,来到一家钢制品加工店定制,拿出自己画的组合体三视图(如图2所示).店老板看了三视图,报了最低价,张师傅觉得很便宜,当即甩下定金和三视图,约定第二天提货.第二天提货时,店老板一脸坏笑的捧出如图3–1所示的组合体,张师傅一看,脸都绿了:“奸商,怎能如此偷工减料”.店老板说,我是按你的三视图做的,要不我给你加一个正方体,但要加价,随机加上了一个正方体,得到如图3–2所示的组合体;张师傅脸还是绿的,店老板又加上一个正方体,组成了如图 3–3 所示的组合体,又加价;张师傅脸继续绿,店老板再加一个正方体,组成如图 3–4 所示的组合体,再次加价;双方就三视图争吵不休……

你认为店老板提供的个组合体的三视图与张师傅画的三视图一致的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为,且满足

(Ⅰ)求角

(Ⅱ)向量,若函数的图象关于直线对称,求角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根据以上数据,估计该企业得分大于45分的员工人数;

(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:

“满意”的人数

“不满意”的人数

总计

16

14

总计

30

(3)根据上述表中数据,利用独立性检验的方法判断,能否有99%的把握认为该企业员工“性别”与“工作是否满意”有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入的数据如下表:

x

x1

x2

x3

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

-2

0

(1)求x1,x2,x3的值及函数f(x)的表达式;

(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,求函数y=f(x)·g(x)在区间的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

)若函数上递减, 求实数的取值范围;

)当时,求的最小值的最大值;

)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y,

(1)在直角坐标系xOy,(x,y)为坐标的点共有几个?试求点(x,y)落在直线x+y=7上的概率;

(2)规定:x+y10,则小王赢;x+y4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.

查看答案和解析>>

同步练习册答案