精英家教网 > 高中数学 > 题目详情
已知函数g(x)对一切实数x,y都有g(x+y)-g(y)=x(x+2y+1)成立,且g(1)=0,设f(x)=
g(x)-3x+3
x

(1)求g(0)的值;
(2)求f(x)的解析式.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)对抽象函数满足的函数值关系的理解和把握是解决该问题的关键,对自变量适当的赋值可以解决该问题,结合已知条件可以赋x=-1,y=1求出f(0);
(2)在(1)基础上赋值y=0可以实现求解f(x)的解析式的问题;
解答: 解:(1)∵g(x+y)-g(y)=x(x+2y+1),g(1)=0,
令x=1,y=0,得g(1)-g(0)=1×(1+0+1)=2,
故g(0)=-2,
(2)令y=0,则g(x)-g(0)=x(x+1),
∴g(x)=x2+x-2,
∴f(x)=
g(x)-3x+3
x
=
x2+x-2-3x+3
x
=x+
1
x
-2,
点评:本题考查抽象函数的问题,采用赋值法是解决这类问题的常用方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设非零复数x,y满足x2+xy+y2=0,则代数式(
x
x+y
)2012+(
y
x+y
)2012
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于空间中的三条不同的直线,有下列三个条件:
①三条直线两两平行;
②三条直线共点;
③有两条直线平行,第三条直线和这两条直线都相交.
其中,能作为这三条直线共面的充分条件的有(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD的边长为4,点E在边AB上,F、G在边BC上,且AE=BF=2,BG=3.将此正方形沿DE、DF折起,使点A、C重合于点P,则三棱锥P-DEF中EF与DG所成角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实数a,b,c分别满足2a=log 
1
2
a,(
1
2
b=log 
1
2
b,(
1
2
c=log2c,则其大小关系为(  )
A、a<b<c
B、c<b<a
C、a<c<b
D、b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

若0<x<
1
2
,则x(1-2x)有(  )
A、最小值
1
4
B、最小值
1
8
C、最大值
1
4
D、最大值
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,侧楼AA1⊥底面ABC,AB=BC=CC1=4,N为AC的中点,M为BC的中点.
(1)求证:A1B1∥平面MNC1
(2)求二面角C1-MN-C的正切值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,S9=-18,S13=-52,{bn}为等比数列,且b5=a5,b7=a7,则b15的值为(  )
A、64B、128
C、-64D、-128

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,使△ABD为钝角三角形的概率为(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

同步练习册答案