精英家教网 > 高中数学 > 题目详情
椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB是椭圆+=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOM•kAB=-.那么对于双曲线则有如下命题:AB是双曲线-=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOM•kAB=   
【答案】分析:先设A(x1,y1),B(x2,y2),M(x,y),则根据中点坐标公式有.将A,B的坐标代入双曲线方程得:.两式相减得后结合直线的斜率公式即得kOM•kAB=
解答:解:设A(x1,y1),B(x2,y2),M(x,y),
则有

两式相减得
=
=
即kOM•kAB=
故答案为:
点评:本题主要考查了类比推理、圆锥曲线的共同特征.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOM•kAB=-
b2
a2
.那么对于双曲线则有如下命题:AB是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOM•kAB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆与双曲线有许多优美的对偶性质,对于椭圆有如下命题:已知A、F、B分别是优美椭圆
x2
a2
+
y2
b2
=1(a>b>0)(离心率为黄金分割比
5
-1
2
的椭圆)的左顶点、右焦点和上顶点,则AB⊥BF.那么对于双曲线则有如下命题:已知A、F、B分别是优美双曲线
x2
a2
-
y2
b2
=1(a>b>0)(离心率为黄金分割比的倒数
5
+1
2
的双曲线)的左顶点、右焦点和其虚轴的上端点,则有(  )

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(2)(解析版) 题型:解答题

椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB是椭圆+=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOM•kAB=-.那么对于双曲线则有如下命题:AB是双曲线-=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOM•kAB=   

查看答案和解析>>

科目:高中数学 来源:2011年《龙门亮剑》高三数学(文科)一轮复习:第1章第5节(人教AB通用)(解析版) 题型:选择题

椭圆与双曲线有许多优美的对偶性质,对于椭圆有如下命题:已知A、F、B分别是优美椭圆+=1(a>b>0)(离心率为黄金分割比的椭圆)的左顶点、右焦点和上顶点,则AB⊥BF.那么对于双曲线则有如下命题:已知A、F、B分别是优美双曲线-=1(a>b>0)(离心率为黄金分割比的倒数的双曲线)的左顶点、右焦点和其虚轴的上端点,则有( )
A.AB⊥BF
B.AF⊥BF
C.AB⊥AF
D.AB∥BF

查看答案和解析>>

同步练习册答案