如图,点
是椭圆
(
)的左焦点,点
,
分别是椭圆的左顶点和上顶点,椭圆的离心率为
,点
在
轴上,且
,过点
作斜率为
的直线
与由三点
,
,
确定的圆
相交于
,
两点,满足
.
![]()
(1)若
的面积为
,求椭圆的方程;
(2)直线
的斜率是否为定值?证明你的结论.
科目:高中数学 来源: 题型:
如图,点
是椭圆
的左焦点,
、
是椭圆的两个顶点,
椭圆的离心率为
点
在
轴上,
,且
、
、
三点确定的圆
恰好与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过
作一条与两坐标轴都不垂直的直线
交椭圆于
、
两点,在
轴上是否存在定点
,使得
恰好为△
的内角平分线,若存在,求出点
的坐标,若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试文科数学 题型:解答题
(本小题满分12分)
如图,点
是椭圆
上一动点,点
是点
在
轴上的射影,坐标平面
内动点
满足:
(
为坐标原点),设动点
的轨迹为曲线
.
![]()
(Ⅰ)求曲线
的方程并画出草图;
(Ⅱ)过右焦点
的直线
交曲线
于
,
两点,且
,点
关于
轴的对称点为
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com