精英家教网 > 高中数学 > 题目详情
20.某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到如下频率分布直方图.
(Ⅰ)求分数在[70,80)内的频率;
(Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)
(Ⅲ)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?

分析 (1)利用频率直方图的矩形的总面积之和为1,求分数在[70,80)内的频率为x.
(2)根据平均分、众数、中位数的求法求解即可;
(3)根据分层抽样的特点,按比例抽取即可.

解答 解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有:
(0.01+0.015×2+0.025+0.005)×10+x=1,
可得x=0.3;
(2)估计该校高二年级学生政治成绩的平均分为:
(45×0.01+55×0.015+65×0.015+75×0.03+85×0.025+95×0.005)×10=71,
根据频率分布直方图,估计这40名学生期中政治成绩的众数为75,
因为在频率分布直方图中
第一、二、三组的频率之和为(0.010+0.015×2)×10=0.4,
所以中位数=70+$\frac{0.5-0.4}{0.3}$≈70.3;
(3)[40,50)内抽取的人数是:20×0.010×10=2人;
[50,60)内抽取的人数是:20×0.015×10=3人;
[60,70)内抽取的人数是:20×0.015×10=3人;
[70,80)内抽取的人数是:20×0.03×10=6人;
[80,90)内抽取的人数是:20×0.025×10=5人;
[9,100]取的人数是:20×0.00×10=1人,
各分数段抽取的人数分别是2人,3人,3人,6人,5人,1人.

点评 本小题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数y=-x2+4ax在区间[1,3]上单调递减,则实数a的取值范围是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(-1,k),若$\overrightarrow a$⊥(2$\overrightarrow a$-$\overrightarrow b$),则k=(  )
A.-12B.12C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{1+2lnx}{x^2}$.
(1)求函数f(x)的单调区间.
(2)令g(x)=ax2-2lnx-1,若函数y=g(x)有两个不同的零点,求实数a的取值范围.
(3)若存在x1,x2∈(0,+∞)且x1≠x2,使$\frac{{f({x_1})-f({x_2})}}{{ln{x_1}-ln{x_2}}}≤k$成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)根据频率分布直方图,估计这100名学生语文成绩的平均数、中位数、众数;
(2)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,80)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m$=(2sinx,1),$\overrightarrow n$=($\sqrt{3}$cosx,2cos2x),函数f(x)=$\overrightarrow m$•$\overrightarrow n$-t.
( I)若方程f(x)=0在x∈[0,$\frac{π}{2}$]上有解,求t的取值范围;
(II)在△ABC中,a,b,c分别是A,B,C所对的边,当t=3且f(A)=-1,b+c=2时,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=Asin(ωx+φ)A>0且ω>0,0<φ<$\frac{π}{2}$的部分图象,如图所示.
(1)求函数f(x)的解析式;
(2)已知f(2x0)=-$\frac{{\sqrt{3}}}{2}$,x0∈(0,$\frac{5π}{6}$),求x0的值;
(3)若函数h(x)=2f(x)-a在[0,$\frac{4π}{3}$]上有两个不同的零点,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知黄河游览区有两艘游船,两艘游船每天上午11点出发,下午3点至5点之间返回码头,假如码头只有一个泊位,每艘游船需要停靠码头15分钟游客下完后即驶离码头,每艘油船返回时在下午3点至5点之间的任何一时刻停靠码头是等可能的,求你乘坐一艘游船游览黄河游览区,下午返回码头时,停船的泊位是空的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量x的中位数;
(2)将y表示为x的函数;
(3)根据直方图估计利润不少于4800元的概率.

查看答案和解析>>

同步练习册答案