精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sin2x,-
1
2
),
b
=(
3
2
,cos2x),x∈R,设函数f(x)=
a
b

(Ⅰ)求f(x)的最小正周期.
(Ⅱ)求f(x)在[0,
π
2
]上的最大值和最小值.
考点:三角函数中的恒等变换应用,平面向量数量积的运算,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(Ⅰ)利用向量的坐标表示出f(x)的解析式,利用两角和公式对函数解析式化简整理,最后利用周期公式求得函数的最小正周期.
(Ⅱ)根据x的范围确定2x-
π
6
的范围,然后根据三角函数的性质求得函数的最大和最小值.
解答: 解:(Ⅰ)f(x)=
a
b
=
3
2
sin2x-
1
2
cos2x=sin(2x-
π
6
),
∴T=
2
=π.
(Ⅱ)∵x∈[0,
π
2
],
∴-
π
6
≤2x-
π
6
6

∴-
1
2
≤sin(2x-
π
6
)≤1,
∴f(x)在[0,
π
2
]上的最大值和最小值分别是-
1
2
,1.
点评:本题主要考查了三角函数恒等变换的应用,三角函数图象和性质,考查了学生对基础知识的掌握程度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,既是奇函数又在其定义域内是增函数的是(  )
A、f(x)=cosx
B、f(x)=sinx+x
C、f(x)=x2+1
D、f(x)=x3-3x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD所在的平面与平面ABF互相垂直,在△ABF中,AB=
3
,AF=2,BF=1,O、P分别为AC和AF的中点.
(1)求证:AB⊥CF;
(2)若四棱锥F-ABCD的体积为1,求直线OP与平面ABF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,e为自然对数的底数,函数f(x)=
(-2x3+3ax2+6ax-4a2-6a)•ex,x≤1
[(6a-1)lnx+x+
a
x
+15a]•e,x>1

(Ⅰ)当a=0时,求f(x)在x=e处的切线方程;
(Ⅱ)当a<-1时,是否存在a使f(x)在[a,-a]上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D(D为定义域)图象上的点到坐标原点的距离为函数的y=f(x),x∈D的模.若模存在最大值,则称之为函数y=f(x),x∈D的长距;若模存在最小值,则称之为函数y=f(x),x∈D的短距.
(1)判断函数f1(x)=
1
x
是否存在长距与短距,若存在,请求出;
(2)判断函数f2(x)=
-x2-4x+5
是否存在长距与短距,若存在,请求出;
(3)对于任意x∈[1,2]都存在实数a使得函数f(x)=
2x|x-a|
的短距不小于2,求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(m-2)x为增函数;命题q:方程x2+2mx+2-m=0有实根;若p假q真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物,2012年3月2日,国家环保部发布了新修订的《环境质量标准》,其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 PM2.5(微克/立方米) 频数(天) 频率
第一组 (0,15] 4 0.1
第二组 (15,30] 12 0.3
第三组 (30,45] 8 0.2
第四组 (45,60] 8 0.2
第五组 (60,75] 4 0.1
第六组 (75,90] 4 0.1
(Ⅰ)求该样本的平均数的估计值,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进,并说明理由;
(Ⅱ)从这40天中,随机抽取2天,记这2天中该居民区PM2.5的24小时平均浓度符合《环境空气质量标》的天数为ξ,求ξ的分布列及数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1+a3=10,a4+a6=
5
4
,求an和S4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a3=15,a5=11,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是
 

查看答案和解析>>

同步练习册答案