精英家教网 > 高中数学 > 题目详情
20.如图,在四面体ABCD中,AB=CD=2,AD=BD=3,AC=BC=4,点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.2

分析 由直线AB平行于平面EFGH,且平面ABC交平面EFGH于HG,所以HG∥AB,同理EF∥AB,FG∥CD,EH∥CD,所以FG∥EH,EF∥HG.四边形EFGH为平行四边形.又∵AD=BD,AC=BC的对称性,可知AB⊥CD.
所以:四边形EFGH为矩形.建立二次函数关系求解四边形EFGH面积的最大值.

解答 解:∵直线AB平行于平面EFGH,且平面ABC交平面EFGH于HG,∴HG∥AB;
同理:EF∥AB,FG∥CD,EH∥CD,所以:FG∥EH,EF∥HG.
故:四边形EFGH为平行四边形.
又∵AD=BD,AC=BC的对称性,可知AB⊥CD.
所以:四边形EFGH为矩形.
设BF:BD=BG:BC=FG:CD=x,(0≤x≤1)
FG=2x,HG=2(1-x)
SEFGH=FG×HG=4x(1-x)
=-4(${x}^{2}-x+\frac{1}{4}-\frac{1}{4}$)
=-4$(x-\frac{1}{2})^{2}+1$
根据二次函数的性质可知:SEFGH面积的最大值1.
故选:C.

点评 本题考查了四面体ABCD中的对称性来证明四边形是矩形.同时考查了动点的问题以及灵活性的运用.属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.满足{1,2,3}⊆A?{1,2,3,4,5,6}的集合A的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ln(1+x)-ln(1-x).
(1)已知方程f(x)=$\frac{m}{x}$在[$\frac{1}{3}$,$\frac{1}{2}$]上有解,求实数m的范围;
(2)求证:当x∈(0,1)时,f(x)>2(x+$\frac{{x}^{3}}{3}$);
(3)设正数k使得f(x)>k(x+$\frac{{x}^{3}}{3}$)对x∈(0,1)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f′(x),且f′(x)是偶函数,则曲线y=f(x)在x=2处切线的斜率为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:实数m满足m2-7ma+12a2<0(a>0),命题q:满足方程$\frac{x^2}{m-1}$+$\frac{y^2}{2-m}$=1表示焦点在y轴上的椭圆,若¬p是¬q的必要而不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$垂直,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.0B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sinα=$\frac{4}{5}$,tan(α+β)=1,且α是第二象限的角,那么tanβ的值是(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数在[-$\frac{π}{8}$,$\frac{π}{16}$]的值域为(  )
A.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]B.[-1,$\frac{\sqrt{3}}{2}$]C.[-$\frac{1}{2}$,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.同时掷两枚骰子,向上的点数之和是5的概率是(  )
A.$\frac{1}{11}$B.$\frac{1}{9}$C.$\frac{2}{5}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案