精英家教网 > 高中数学 > 题目详情
10.满足{1,2,3}⊆A?{1,2,3,4,5,6}的集合A的个数为7.

分析 根据集合的基本运算求出集合A即可.

解答 解:由题意:{1,2,3}⊆A,那么集合A中一定含所有1,2,3这三个元素,可以得1种.
A${\;}_{≠}^{?}${1,2,3,4,5,6},那么除去1,2,3这三个元素,还可以从4,5,6中取1个元素来构成机构集合,有3种,取2个元素有3种.满足题意的有3+3+1=7种.
故答案为7.

点评 本题主要考查利用集合的基本运算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若x∈R,n∈N,定义Mxn=x(x+1)(x+2)…(x+n-1),例如,M-43=(-4)(-3)(-2)=-24,则函数f(x)=Mx-511•sinx的奇偶性是(  )
A.是偶函数不是奇函数B.是奇函数不是偶函数
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(文)若三条直线a、b、c两两异面,它们所成的角都相等且存在一个平面与这三条直线都平行,则a与b所成的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=$\frac{π}{3}$,b(1-cosC)=ccosA,b=2,则△ABC的面积为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$或2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={a,b},B={x|x∈A},C={x|x⊆A},试判断A、B、C之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.己知双曲线:$\frac{x^2}{a}$-$\frac{y^2}{b}$=1(a>0,b>0)的一条渐进线为2x+y=0,一个焦点为($\sqrt{5}$,0),则a=1,b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C的对边分别是a,b,c,其中b=c=2,若函数f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x的极大值是cosA,则△ABC的形状为(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}|{{{log}_3}x}|,0<x<3\\ sin({\frac{π}{6}x}),3≤x≤15\end{array}$,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则$\frac{{{x_3}+{x_4}}}{{{x_1}{x_2}}}$的值等于(  )
A.18πB.18C.D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在四面体ABCD中,AB=CD=2,AD=BD=3,AC=BC=4,点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.2

查看答案和解析>>

同步练习册答案