分析 根据命题p、q分别求出m的范围,再根据p是q的充分不必要条件列出关于a的不等式组,解不等式组即可
解答 解:由m2-7am+12a2<0(a>0),则3a<m<4a
即命题p:3a<m<4a,
实数m满足方程$\frac{x^2}{m-1}$+$\frac{y^2}{2-m}$=1表示焦点在y轴上的椭圆,
则$\left\{\begin{array}{l}{2-m>0}\\{m-1>0}\\{2-m>m-1}\end{array}\right.$,
即,解得1<m<$\frac{3}{2}$,
因为¬p是¬q的必要而不充分条件,所以p是q的充分不必要条件,
则$\left\{\begin{array}{l}{3a≥1}\\{4a≤\frac{3}{2}}\end{array}\right.$,
解得$\frac{1}{3}$≤a≤$\frac{3}{8}$,
故实数a的取值范围为:[$\frac{1}{3}$,$\frac{3}{8}$].
点评 本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q的等价条件是解决本题的关键.
科目:高中数学 来源: 题型:填空题
| 2 | 3 | 4 | 5 | 6 | 7 | … |
| 3 | 5 | 7 | 9 | 11 | 13 | … |
| 4 | 7 | 10 | 13 | 16 | 19 | … |
| 5 | 9 | 13 | 17 | 21 | 25 | … |
| 6 | 11 | 16 | 21 | 26 | 31 | … |
| 7 | 13 | 19 | 25 | 31 | 37 | … |
| … | … | … | … | … | … | … |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤-7或a≥12 | B. | a=-7或a=12 | C. | -7≤a≤12 | D. | -12≤a≤7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com