精英家教网 > 高中数学 > 题目详情
15.已知命题p:实数m满足m2-7ma+12a2<0(a>0),命题q:满足方程$\frac{x^2}{m-1}$+$\frac{y^2}{2-m}$=1表示焦点在y轴上的椭圆,若¬p是¬q的必要而不充分条件,求实数a的取值范围.

分析 根据命题p、q分别求出m的范围,再根据p是q的充分不必要条件列出关于a的不等式组,解不等式组即可

解答 解:由m2-7am+12a2<0(a>0),则3a<m<4a
即命题p:3a<m<4a,
实数m满足方程$\frac{x^2}{m-1}$+$\frac{y^2}{2-m}$=1表示焦点在y轴上的椭圆,
则$\left\{\begin{array}{l}{2-m>0}\\{m-1>0}\\{2-m>m-1}\end{array}\right.$,
即,解得1<m<$\frac{3}{2}$,
因为¬p是¬q的必要而不充分条件,所以p是q的充分不必要条件,
则$\left\{\begin{array}{l}{3a≥1}\\{4a≤\frac{3}{2}}\end{array}\right.$,
解得$\frac{1}{3}$≤a≤$\frac{3}{8}$,
故实数a的取值范围为:[$\frac{1}{3}$,$\frac{3}{8}$].

点评 本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知集合A={a,b},B={x|x∈A},C={x|x⊆A},试判断A、B、C之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果两个变量之间的线性相关程度很高,则其相关系数r的绝对值应接近于(  )
A.0B.0.5C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为aij.则表中的数52共出现4次.
234567
35791113
4710131619
5913172125
61116212631
71319253137

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列说法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②f(x)=$\sqrt{2008-{x}^{2}}$+$\sqrt{{x}^{2}-2008}$既是奇函数又是偶函数;
③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x•y)=x•f(y)+y•f(x),则f(x)是奇函数.
其中正确说法的序号是①②③④(注:把你认为是正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在四面体ABCD中,AB=CD=2,AD=BD=3,AC=BC=4,点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线3x-2y+a=0与连接A(3,1)和B(-2,3)的线段相交,则a的取值范围是(  )
A.a≤-7或a≥12B.a=-7或a=12C.-7≤a≤12D.-12≤a≤7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知Sn为等差数列{an}的前n项和,a3+a7=6,则S9=(  )
A.27B.$\frac{27}{2}$C.54D.108

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设m,n是两条不同的直线,α,β是两个不同的平面,下列说法正确的有(3)(填序号).
(1)若m⊥n,n∥α,则m⊥α
(2)若m∥β,β⊥α,则m⊥α
(3)若m⊥β,n⊥β,n⊥α,则m⊥α
(4)若m⊥n,n⊥β,β⊥α,则m⊥α

查看答案和解析>>

同步练习册答案