精英家教网 > 高中数学 > 题目详情
函数y=Asin(ωx+ϕ)在一个周期内的图象如图,此函数的解析式为( )

A.
B.
C.
D.
【答案】分析:根据已知中函数y=Asin(ωx+ϕ)在一个周期内的图象经过(-,2)点和(-,2),我们易分析出函数的最大值,最小值,周期,然后可以求出A,ω,φ值后,即可得到函数y=Asin(ωx+ϕ)的解析式.
解答:解:由已知可得函数y=Asin(ωx+ϕ)的图象经过(-,2)点和(-,2)
∴A=2,T=π即ω=2
则函数的解析式可化为y=2sin(2x+ϕ),将(-,2)代入得
-+ϕ=+2kπ,k∈Z,
即φ=+2kπ,k∈Z,
当k=0时,φ=
此时
故选A
点评:本题考查的知识点是由函数y=Asin(ωx+ϕ)的部分图象确定其解析式,其中A=|最大值-最小值|,|ω|=,φ=L•ω(L是函数图象在一个周期内的第一点的向左平移量).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=Asin(ωx+φ)(ω>0)与x轴的两个相邻的交点坐标为(-4,0),(2,0),则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b,则8时的温度大约为
 
°C(精确到1°C)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)+C(A>0,ω>0,|φ|<
π2
)在同一周期中最高点的坐标为(2,2),最低点的坐标为(8,-4).
(I)求A,C,ω,φ的值;
(II)求出这个函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是函数y=Asin(ωx+φ),(-π<φ<π)的图象的一段,O是坐标原点,P是图象的最高点,A点坐标为(5,0),若|
OP
|=
10
OP
OA
=15
,则此函数的解析式为
y=sin(
π
4
x-
π
4
)
y=sin(
π
4
x-
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数y=Asin(ωx+φ),在同一周期内,当x=
π
12
时取最大值y=4;当x=
12
时,取最小值y=-4,那么函数的解析式为:(  )

查看答案和解析>>

同步练习册答案