分析 求出函数的导数,确定函数的单调区间,从而求出函数的最小值即可.
解答 解:f(x)的定义域是(-$\frac{1}{2}$,+∞),
f′(x)=$\frac{2x-1}{2x+1}$,
令f′(x)>0,解得:x>$\frac{1}{2}$,
令f′(x)<0,解得:x<$\frac{1}{2}$,
∴f(x)在(-$\frac{1}{2}$,$\frac{1}{2}$)递减,在($\frac{1}{2}$,+∞)递增,
∴f(x)最小值=f(x)极小值=f($\frac{1}{2}$)=$\frac{1}{2}$-ln2.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 2014 | D. | 2015 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{2}{3}$ | B. | $-\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com