精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为$\frac{1}{2}$,则m的值为(  )
A.$-\frac{2}{3}$B.$-\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

分析 联立方程组,求出a,b,求出f(x)的导数,通过讨论m的范围,得到函数f(x)的单调区间,求出f(x)的极大值,得到关于m的方程,解出即可.

解答 解:∵f(x)=x3+ax2+bx(a,b∈R),
∴f′(x)=3x2+2ax+b,
∵f(x)的图象与x轴相切于一点A(m,0)(m≠0),
∴$\left\{\begin{array}{l}{{3m}^{2}+2am+b=0}\\{{m}^{2}+am+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-2m}\\{b{=m}^{2}}\end{array}\right.$,
∴f′(x)=(3x-m)(x-m),
m>0时,令f′(x)>0,解得:x>m或x<$\frac{m}{3}$,
令f′(x)<0,解得:$\frac{m}{3}$<x<m,
∴f(x)在(-∞,$\frac{m}{3}$)递增,在($\frac{m}{3}$,m)递减,在(m,+∞)递增,
∴f(x)极大值=f($\frac{m}{3}$)=$\frac{1}{2}$,解得:m=$\frac{3}{2}$,
m<0时,令f′(x)>0,解得:x<m或x>$\frac{m}{3}$,
令f′(x)<0,解得:$\frac{m}{3}$>x>m,
∴f(x)在(-∞,m)递增,在(m,$\frac{m}{3}$)递减,在($\frac{m}{3}$,+∞)递增,
∴f(x)极大值=f(m)=$\frac{1}{2}$,而f(m)=0,不成立,
综上,m=$\frac{3}{2}$,
故选:D.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=ln$\frac{1}{2x+1}$+x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.P为曲线C:x2=2py(p>0)上任意一点,O为坐标原点,则线段PO的中点M的轨迹方程是(  )
A.x2=py(x≠0)B.y2=px(y≠0)C.x2=4py(x≠0)D.y2=4px(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知O是坐标系的原点,F是抛物线C:x2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.
(Ⅰ)求动点G的轨迹方程;
(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与x轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线方程为y=±2x,则双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为(  )
A.48B.32C.16D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则该几何体的体积是(  )
A.B.C.12πD.14π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α终边上一点P(-3,4),求:
(1)sinα和cosα的值
(2)$\frac{{cos(\frac{π}{2}+α)-sin(-π-α)}}{{cos(\frac{11π}{2}-α)+sin(\frac{9π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)和g(x)满足f(x)=$\frac{{f}^{′}(1)}{2}$•e2x-2+x2-2f(0)x,且g′(x)+2g(x)<0,则下列不等式成立的是(  )
A.f(2)g(2015)<g(2017)B.f(2)g(2015)>g(2017)C.g(2015)<f(2)g(2017)D.g(2015)>f(2)g(2017)

查看答案和解析>>

同步练习册答案