精英家教网 > 高中数学 > 题目详情

已知函数,函数.若对任意,总存在,使成立.则实数的取值范围是          .


解析:

考查导数在函数中的运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是同时满足下列两个性质的函数f(x)的全体:
①函数f(x)在其定义域上是单调函数;
②在函数f(x)的定义域内存在闭区间[a,b]使得f(x)在[a,b]上的最小值是
a
2
,且最大值是
b
2
.请解答以下问题
(1)判断函数f(x)=x+
2
x
(x∈(0,+∞))
是否属于集合M?并说明理由;
(2)判断函数g(x)=-x3是否属于集合M?并说明理由.若是,请找出满足②的闭区间[a,b];
(3)若函数h(x)=
x-1
+t∈M
,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的周期函数,周期为5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5,
(1)求f(1)+f(4)的值;
(2)求y=f(x),x∈[1,4]上的解析式;
(3)求y=f(x)在[4,9]上的解析式,并求函数y=f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的函数.
(1)若函数y=f(x)满足:f(xy)=f(x)+f(y),f(
1
3
)=1

①求f(1),f(
1
9
)
的值,
②若函数y=f(x)是定义域为R+的减函数,且f(x)+f(2-x)<2,求x的取值范围.
(2)若函数y=f(x)对一切x∈R满足f(x+2)=-f(x),求证:f(x)是周期函数;
(3)若函数y=f(x)对一切x、y∈R满足f(x+y)=f(x)+f(y),求证:f(x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx+cosx,给出下列四个命题:
(1)若x∈[0,
π
2
]
,则y∈(0,
2
]

(2)直线x=-
4
是函数y=sinx+cosx图象的一条对称轴;
(3)在区间[
π
4
4
]
上函数y=sinx+cosx是减函数;
(4)函数y=sinx+cosx的图象可由y=
2
sinx
的图象向右平移
π
4
个单位而得到.其中正确命题的序号是
(2)(3)
(2)(3)

查看答案和解析>>

同步练习册答案