精英家教网 > 高中数学 > 题目详情

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F,G分别是棱C1D1,AA1的中点.设点E1,G1分别是点E,G在平面DCC1D1内的射影.

(1)求以E为顶点,以四边形FGAE在平面DCC1D1内的射影为底面的棱锥的体积;

(2)求证:直线FG1⊥平面FEE1

(3)求异面直线E1G1与EA所成的角的正弦值.

答案:
解析:

  (1)解:根据题意可知,所求体积即为四棱锥E-FG1DE1的体积.因为点E1,G1分别为棱CC1,DD1的中点,所以=22×2×1-2××1×1=2.又因为点E到平面DCC1D1的距离为EE1=1,故×2×1=

  (2)证明:在正方形DCC1D1中,FG1=FE1,G1E1=2,FG12+FE12=G1E12,故FG1⊥FE1.又EE1⊥平面DCC1D1,FG1平面DCC1D1,所以EE1⊥FG1因为FE1∩EE1=E1,所以FG1⊥平面FEE1

  (3)解:因为E1G1∥CD,AB∥CD,所以E1G1∥AB,所以∠EAB即为异面直线E1G1与EA所成的角.因为AB⊥平面BCC1B1,BE平面BCC1B1,所以AB⊥BE.在Rt△ABE中,AB=2,BE=,AE=,所以sin∠EAB=.所以异面直线E1G1与EA所成角的正弦值为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、如图,已知正方体ABCD-A1B1C1D1的棱长为3,点E,F在线段AB上,点M在线段B1C1上,点N在线段C1D1上,且EF=1,D1N=x,AE=y,M是B1C1的中点,则四面体MNEF的体积(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:
(1)D1E与平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是D1C、AB的中点.
(I)求证:EF∥平面ADD1A1
(Ⅱ)求二面角D-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D⊥平面PQR;
(2)设二面角B1-PR-Q的大小为θ,求|cosθ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)如图,已知正方体ABCD-A1B1C1D1 的棱长为2,E,F分别是BB1,CD的中点.
(1)求三棱锥E-AA1F的体积;
(2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案