| A. | π | B. | -1 | C. | 1 | D. | $\frac{π}{2}$ |
分析 求解导数得出f(x)′=sinx+xcosx-sinx=xcosx,根据导数与单调性的关系判断得出f(x)在(0,$\frac{π}{2}$)单调递增,在($\frac{π}{2}$,$\frac{3π}{2}$)单调递减,求解可以得出极大值.
解答 解;∵函数f(x)=xsinx+cosx,
∴f(x)′=sinx+xcosx-sinx=xcosx
∵x∈(0,$\frac{3π}{2}$)
f(x)′=0,x=$\frac{π}{2}$,
f(x)′>0,0<x<$\frac{π}{2}$,
f(x)′<0,$\frac{π}{2}$$<x<\frac{3π}{2}$,
∴f(x)在(0,$\frac{π}{2}$)单调递增,在($\frac{π}{2}$,$\frac{3π}{2}$)单调递减.
∴x=$\frac{π}{2}$时,f(x)极大值=f($\frac{π}{2}$)=$\frac{π}{2}$×sin$\frac{π}{2}$+cos$\frac{π}{2}$=$\frac{π}{2}$
故选:D.
点评 本题简单考查了导数,结合三角函数的性质,求解函数的极大值问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\frac{{\sqrt{5}-1}}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 8 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com