精英家教网 > 高中数学 > 题目详情
14.函数f(x)=xsinx+cosx在区间(0,$\frac{3π}{2}$)上的极大值为(  )
A.πB.-1C.1D.$\frac{π}{2}$

分析 求解导数得出f(x)′=sinx+xcosx-sinx=xcosx,根据导数与单调性的关系判断得出f(x)在(0,$\frac{π}{2}$)单调递增,在($\frac{π}{2}$,$\frac{3π}{2}$)单调递减,求解可以得出极大值.

解答 解;∵函数f(x)=xsinx+cosx,
∴f(x)′=sinx+xcosx-sinx=xcosx
∵x∈(0,$\frac{3π}{2}$)
f(x)′=0,x=$\frac{π}{2}$,
f(x)′>0,0<x<$\frac{π}{2}$,
f(x)′<0,$\frac{π}{2}$$<x<\frac{3π}{2}$,
∴f(x)在(0,$\frac{π}{2}$)单调递增,在($\frac{π}{2}$,$\frac{3π}{2}$)单调递减.
∴x=$\frac{π}{2}$时,f(x)极大值=f($\frac{π}{2}$)=$\frac{π}{2}$×sin$\frac{π}{2}$+cos$\frac{π}{2}$=$\frac{π}{2}$
故选:D.

点评 本题简单考查了导数,结合三角函数的性质,求解函数的极大值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设各项为正的等比数列{an}的公比q≠1,且a3,a5,a6成等差数列,则$\frac{{a}_{3}+{a}_{5}}{{a}_{4}+{a}_{6}}$的值为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在5个并排的正方形图案中作∠AOnB(n=1,2,3,4,5,6),则这6个角中恰为135°的有(  )个.
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线ax+by-1=0(其中a>0且b>0)平分圆x2+y2-4x-2y-1=0的周长,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=|x+1|+|x-4|-a
(Ⅰ)当a=1时,求函数f(x)的值域;
(Ⅱ)若f(x)+$\frac{12}{a}$≥1对任意的实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}满足:a1=1,且对任意的m,n∈N*,都有:am+n=am+an+mn,则$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2014}}}}$=$\frac{4028}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知|${\overrightarrow a}$|=|${\overrightarrow b}$|,且|${\overrightarrow a$+$\overrightarrow b}$|=$\sqrt{3}$|${\overrightarrow a$-$\overrightarrow b}$|,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,其焦点在圆x2+y2=1上,
(1)求椭圆的方程
(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使$\overrightarrow{OM}$=cosθ$\overrightarrow{OA}$+sinθ$\overrightarrow{OB}$,求证:直线OA与OB的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x+1|+|x-5|-m
(Ⅰ)若函数$y=\sqrt{f(x)}$的定义域为R,求实数m的取值范围;
(Ⅱ)若$f(x)≥\frac{9}{m}$对任意的实数x恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案