精英家教网 > 高中数学 > 题目详情
6.抛物线y2=2x被直线y=2x-1截得的弦长为$\frac{5}{2}$.

分析 联立$\left\{\begin{array}{l}{y=2x-1}\\{{y}^{2}=2x}\end{array}\right.$,化为:4x2-6x+1=0,利用|AB|=$\sqrt{(1+{2}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.

解答 解:设直线y=2x-1与抛物线相交于两点A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{y=2x-1}\\{{y}^{2}=2x}\end{array}\right.$,化为:4x2-6x+1=0,
∴x1+x2=$\frac{3}{2}$,x1x2=$\frac{1}{4}$.
∴|AB|=$\sqrt{(1+{2}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{5[(\frac{3}{2})^{2}-4×\frac{1}{4}]}$=$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题考查了直线与抛物线相交弦长问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知6sin2α+sinαcosα-2cos2α=0,α∈(${\frac{π}{2}$,π),求:
①tanα的值;
②sin(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.抛物线y=2x2上的一点到焦点的距离为1,则点M的纵坐标为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.cos95°cos25°-sin95°sin25°的值为(  )
A.0B.$\frac{1}{2}$C.1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数Z=$\frac{7+i}{3+4i}$(i是虚数单位),则复数$\overline Z$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥P-ABC的侧棱的长均为4,记三棱锥P-ABC三个侧面的面积分别为S1,S2,S3,则当S1+S2+S3取到最大值时,三棱锥P-ABC外接球的表面积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知复数z1=m+(1-m2)•i(m∈R),z2=cosθ+(λ+2sinθ)•i(λ,θ∈R).
(1)当m=3时,求z1的虚部;
(2)若z1=z2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知:a>0,求证:$\sqrt{a+5}$-$\sqrt{a+3}$>$\sqrt{a+6}$-$\sqrt{a+4}$
(2)设x,y都是正数,且x+y>2,试用反证法证明:$\frac{1+x}{y}$<2和$\frac{1+y}{x}$<2中至少有一个成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.
(1)证明:b2=ad;
(2)若M的坐标为($\sqrt{2}$,1),求椭圆C的方程.

查看答案和解析>>

同步练习册答案