精英家教网 > 高中数学 > 题目详情
12.已知f(x)=$\sqrt{{x}^{2}+4}$(x>0),若数列{an}满足a1=2,an=f(an-1),n∈N*,且n≥2,求此数列的通项公式.

分析 通过an=$\sqrt{{{a}_{n-1}}^{2}+4}$(n≥2)可知${{a}_{n+1}}^{2}$=${{a}_{n}}^{2}$+4,进而可知数列{${{a}_{n}}^{2}$}是以首项、公差均为4的等差数列,计算即得结论.

解答 解:依题意,an>0,
∵an=$\sqrt{{{a}_{n-1}}^{2}+4}$(n≥2),
∴${{a}_{n+1}}^{2}$=${{a}_{n}}^{2}$+4,
又∵${{a}_{1}}^{2}$=4,
∴数列{${{a}_{n}}^{2}$}是以首项、公差均为4的等差数列,
∴${{a}_{n}}^{2}$=4n,
∴an=2$\sqrt{n}$.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=(2x+a)2,若f(x)在x=a处的导数值为20,则a=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数y=|ex-1|的图象与直线y=$\frac{1}{m+1}$的两交点横坐标分别为x1、x2(x1<x2),与直线y=m的两交点横坐标分别为x3、x4(x3<x4),若m∈(0,$\frac{1}{2}$),则(x4+x1)-(x3+x2)的取值范围是(  )
A.(-∞,0)B.(-∞,ln$\frac{3}{5}$)C.(ln$\frac{3}{5}$,0)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$\sqrt{4{a}^{2}-4a+1}$=$\root{3}{(1-2a)^{3}}$,则实数a的取值范围是(  )
A.a∈RB.a=$\frac{1}{2}$C.a>$\frac{1}{2}$D.a≤$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(3,-4),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{b}$的单位向量的坐标是($\frac{4}{5}$,$\frac{3}{5}$)或(-$\frac{4}{5}$,-$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.任意两个集合M、N.定义:M-N={x|x∈M且x∉N}}.M△M=(M-N)∪(N-M),M={y|y=x2,x∈R},N={y||y|≤1},则M△N=[-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设全集U={3,6,m2-m-1},A={|3-2m|,6},∁UA={5},求实数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用一张长20cm、宽10cm的矩形铁皮围成圆柱形的侧面,求这个圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x为实数,y为正实数,集合A={x2+x+1,-x,-x-1},B={-y,-$\frac{y}{2}$,y+1},若A=B,求x2+y2的值.

查看答案和解析>>

同步练习册答案