精英家教网 > 高中数学 > 题目详情
4.将一张坐标纸对折一次,已知点(1,0)与(-1,2)重合,则与点(-2,1)重合的点的坐标是(0,-1).

分析 先利用点斜式求出折线的方程,再利用“垂直、中点在轴上”这两个条件求得与点(-2,1)重合的点的坐标.

解答 解:将一张坐标纸对折一次,已知点(1,0)与(-1,2)重合,
则折线经过点(0,1),且斜率为$\frac{-1}{\frac{2-0}{-1-1}}$=1,故折线的方程为y-1=x-0,即x-y+1=0.
则与点(-2,1)重合的点的坐标是M(a,b),则由$\left\{\begin{array}{l}{\frac{b-1}{a+2}=-1}\\{\frac{a-2}{2}-\frac{b+1}{2}+1=0}\end{array}\right.$,
求得M(0,-1),
故答案为:(0,-1).

点评 本题主要考查求一个点关于某条直线的对称点的点的坐标的方法,利用了“垂直、中点在轴上”这两个条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{{\begin{array}{l}{|x-1|}&{(x≤1)}\\{{3^x}}&{(x>1)}\end{array}}$,f(a)=2,则f(f(-1))=9,a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且$2bsinA=\sqrt{3}a$.
(Ⅰ)求角B的大小;
(Ⅱ)若b=6,a+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)为定义在R上的奇函数,g(x)为定义在R上偶函数.且有f(x)+g(x)=2x
(1)证明:函数y=f(x)R上是增函数;
(2)解不等式g(x)$≤\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.判断函数f(x)=$\frac{1}{1+{2}^{x}}$的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2+$\frac{1}{x}$-a,且f(x)≥0在(-∞,-1]上恒成立,则a的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$,g(x)=x+2.
(1)若f(g(a))=g(f(-1)),求a的值;
(2)解不等式f(1-x2)>f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为板轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A,B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.lg22+lg2•lg5+lg50=2.

查看答案和解析>>

同步练习册答案