精英家教网 > 高中数学 > 题目详情
椭圆的离心率为(  )
A.B.C.±D.±
B

试题分析:根据题意可得椭圆的标准方程,所以,所以,所以,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C: (a>b>0)的离心率为,且椭圆C上一点与两个焦点F1,F2构成的三角形的周长为2+2.
(1)求椭圆C的方程;
(2)过右焦点F2作直线l 与椭圆C交于A,B两点,设,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-
(1).求动点P的轨迹C方程;
(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,已知椭圆C1的左焦点为F1(-1,0),且点P(0,1)在C1上。
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左焦点为,直线与椭圆相交于点,当△FAB的周长最大时,的面积是____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设圆锥曲线r的两个焦点分别为,若曲线r上存在点P满足,则曲线r的离心率等于(   )
A.
B.或2
C.或2
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴在轴上,焦距为,则等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:














据此,可推断椭圆的方程为            

查看答案和解析>>

同步练习册答案