精英家教网 > 高中数学 > 题目详情
14.设集合A={x|x2-2x-3≥0,x∈R},集合B={x|-2≤x<2},则A∩B=(  )
A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)

分析 先分别求出集合A和B,由此利用交集定义能求出A∩B.

解答 解:∵集合A={x|x2-2x-3≥0,x∈R}={x|x≤-1或x≥3},
集合B={x|-2≤x<2},
∴A∩B={x|-2≤x≤-1}=[-2,-1].
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知正实数x,y,则$f(x,y)=|x-y|+\frac{16}{x}+{y^2}$的最小值为$\frac{31}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复平面内的平面向量$\overrightarrow{OA}$,$\overrightarrow{AB}$表示的复数分别是-2+i,3+2i,则向量$\overrightarrow{OB}$所表示的复数的模为(  )
A.$\sqrt{5}$B.$\sqrt{13}$C.$\sqrt{10}$D.$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.f(x)=ax3-2x2-3,若f′(1)=2,则a等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平行四边形ABCD中,O是对角线交点,下列结论正确的是(  )
A.$\overrightarrow{AB}=\overrightarrow{CD},\overrightarrow{BC}=\overrightarrow{AD}$B.$\overrightarrow{BO}+\overrightarrow{OD}=\overrightarrow{AD}-\overrightarrow{AB}$C.$\overrightarrow{AD}+\overrightarrow{OD}=\overrightarrow{OA}$D.$\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{BA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个盒子里装有相同大小的红球、白球共30个,其中白球4个.从中任取两个,则概率为$\frac{{C_{26}^1C_4^1+C_4^2}}{{C_{30}^2}}$的事件是(  )
A.没有白球B.至少有一个红球C.至少有一个白球D.至多有一个白球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=\frac{{\sqrt{2}}}{2}cos({2x+\frac{π}{4}})+{sin^2}x$
(1)求f(x)的最小正周期;
(2)当$x∈[{\frac{π}{6},\frac{π}{3}}]$时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别为a,b,c.若角B是A,C的等差中项,且不等式-x2+8x-12>0的解集为{x|a<x<c},则△ABC的面积等于(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=(m+1)x2-mx+m-1
(1)当m=1时,求不等式f(x)>0的解集;
(2)若m>-1,求不等式f(x)>mx的解集.

查看答案和解析>>

同步练习册答案