如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?
箱子底边长取40 cm时,容积最大,最大容积为16 000 cm3.
解析试题分析:设箱子的底边长为x cm,则箱子高h=cm.
箱子容积V=V(x)=x2h= (0<x<60).
求V(x)的导数,得V′(x)=60x-x2=0,
解得x1=0(不合题意,舍去),x2=40.
当x在(0,60)内变化时,导数V′(x)的正负如下表:
因此在x=40处,函数V(x)取得极大值,并且这个极大值就是函数V(x)的最大值.x (0,40) 40 (40,60) V′(x) + 0 -
将x=40代入V(x)
得最大容积V=402×=16 000(cm3).
所以箱子底边长取40 cm时,容积最大,最大容积为16 000 cm3.
考点:本题主要考查函数模型,应用导数研究函数的单调性、最值。
点评:典型题,本题属于函数及导数应用中的基本问题,通过研究构建函数函数模型,利用导数求函数的最值。关于函数应用问题的考查,在高考题中往往是“一大两小”。构建函数模型的步骤“审清题意、设出变量、确定函数、求解答案、写出结语”。本题利用均值定理,确定函数的最值。
科目:高中数学 来源: 题型:解答题
2013年某工厂生产某种产品,每日的成本(单位:万元)与日产量(单位:吨)满足函数关系式,每日的销售额(单位:万元)与日产量的函数关系式
已知每日的利润,且当时,.
(1)求的值;
(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某工厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据以往的经验知道,其次品率P与日产量(件)之间近似满足关系:
(其中为小于96的正整常数)
(注:次品率P=,如P=0.1表示每生产10件产品,有1件次品,其余为合格品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损A/2元,故厂方希望定出合适的日产量。
试将生产这种仪器每天的赢利T(元)表示为日产量(件的函数);
当日产量为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差数列.
(1)求实数m的值;
(2)若a、b、c是两两不相等的正数,且a、b、c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com