精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的定义域;
(2)若存在,对任意,总存在唯一,使得成立.求实数的取值范围.

(1)
(2)

解析试题分析:解:(1)由 解得 

(2)首先, 
     ∴函数的值域为
其次,由题意知:,且对任意,总存在唯一,使得.以下分三种情况讨论:
①当时,则,解得
②当时,则,解得
③当时,则,解得
综上:
考点:三角函数的性质
点评:主要是考查了三角函数的性质和对数函数的不等式的求解,以及二次方程根的分布问题,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某产品在一个生产周期内的总产量为100t,平均分成若干批生产。设每批生产需要投入固定费用75元,而每批生产直接消耗的费用与产品数量x的平方成正比,已知每批生产10t时,直接消耗的费用为300元(不包括固定的费用)。
(1)若每批产品数量为20t,求此产品在一个生产周期的总费用(固定费用和直接消耗的费用)。
(2)设每批产品数量为xt,一个生产周期内的总费用y元,求y与x的函数关系式,并求
出y的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减
少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中
逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:
,只有当污染河道水中碱的浓度不低于时,才能对污
染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(2)第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单
位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.
(此时水中碱浓度为两次投放的浓度的累加)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,是某地一个湖泊的两条互相垂直的湖堤,线段和曲线段分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥上某点分别修建与平行的栈桥,且以为边建一个跨越水面的三角形观光平台.建立如图2所示的直角坐标系,测得线段的方程是,曲线段的方程是,设点的坐标为,记.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)

(1)求的取值范围;
(2)试写出三角形观光平台面积关于的函数解析式,并求出该面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).

(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)解方程:
(Ⅱ)设,求函数在区间上的最大值的表达式;
(Ⅲ)若,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数 的最大值为6.求最小值.

查看答案和解析>>

同步练习册答案