已知函数
,
.
(Ⅰ)解方程:
;
(Ⅱ)设
,求函数
在区间
上的最大值
的表达式;
(Ⅲ)若
,
,求
的最大值.
科目:高中数学 来源: 题型:解答题
已知幂函数
,且
在
上单调递增.
(1)求实数
的值,并写出相应的函数
的解析式;
(2)若
在区间
上不单调,求实数
的取值范围;
(3)试判断是否存在正数
,使函数
在区间
上的值域为
若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数f(x)有两个零点0和-2,且f(x)最小值是-1,函数g(x)与f(x)的图像关于原点对称.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在区间[-1,1]上是增函数,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
森林失火了,火正以
的速度顺风蔓延,消防站接到报警后立即派消防员前去,在失火后
到达现场开始救火,已知消防队在现场每人每分钟平均可灭火
,所消耗的灭火材料、劳务津贴等费用每人每分钟
元,另附加每次救火所损耗的车辆、器械和装备等费用平均每人
元,而每烧毁
森林的损失费为
元,设消防队派了
名消防员前去救火,从到达现场开始救火到火全部扑灭共耗时![]()
.
(1)求出
与
的关系式;
(2)问
为何值时,才能使总损失最小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
2013年某工厂生产某种产品,每日的成本
(单位:万元)与日产量
(单位:吨)满足函数关系式
,每日的销售额
(单位:万元)与日产量
的函数关系式![]()
已知每日的利润
,且当
时,
.
(1)求
的值;
(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨
元(
为正整数),每个月的销售利润为
元.(14分)
(1)求
与
的函数关系式并直接写出自变量
的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com