精英家教网 > 高中数学 > 题目详情

函数 的最大值为6.求最小值.

a=1,最小值为0 。

解析试题分析:令 可化为,而函数 的最大值为6.即t=-1时,1-3+2a=6,所以a=1.当t=1时,最小值为0.
考点:本题主要考查二次函数的图象和性质,余弦函数的值域(有界性)。
点评:小综合题,利用换元法,将问题转化成二次函数闭区间上的最值问题。本题比较基础、典型。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)若存在,对任意,总存在唯一,使得成立.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差数列.
(1)求实数m的值;
(2)若a、b、c是两两不相等的正数,且a、b、c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:
(1)          
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时,有(其中为自然对数的底,).
(1)求函数的解析式;
(2)设,求证:当时,
(3)试问:是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(14分)
(1)求的函数关系式并直接写出自变量的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数,且在区间上是单调减函数(Ⅰ)求函数;(Ⅱ)讨论的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)某工厂有214名工人, 现要生产1500件产品, 每件产品由3个A型零件与1个B型零件配套组成, 每个工人加工5个A型零件与3个B型零件所需时间相同. 现将全部工人分为两组, 分别加工一种零件, 同时开始加工. 设加工A型零件的工人有x人, 在单位时间内每人加工A型零件5k(k∈N*), 加工完A型零件所需时间为g(x), 加工完B型零件所需时间为h (x).
 (Ⅰ) 试比较大小, 并写出完成总任务的时间的表达式;
(Ⅱ) 怎样分组才能使完成任务所需时间最少?

查看答案和解析>>

同步练习册答案