精英家教网 > 高中数学 > 题目详情
9.如图,已知正四棱锥P-ABCD中,AB=4,高$h=2\sqrt{2}$,点M是侧棱PC的中点,则异面直线BM与AC所成角的余弦值为$\frac{\sqrt{6}}{6}$.

分析 以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线BM与AC所成角的余弦值.

解答 解:如图,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,
B(0,2$\sqrt{2}$,0),A(2$\sqrt{2}$,0,0),C(-2$\sqrt{2}$,0,0),
P(0,0,2$\sqrt{2}$),M(-$\sqrt{2}$,0,$\sqrt{2}$),
$\overrightarrow{BM}$=(-$\sqrt{2}$,-2$\sqrt{2}$,$\sqrt{2}$),$\overrightarrow{AC}$=(-4$\sqrt{2}$,0,0),
设异面直线BM与AC所成角为θ,
则cosθ=$\frac{|\overrightarrow{BM}•\overrightarrow{AC}|}{|\overrightarrow{BM}|•|\overrightarrow{AC}|}$=$\frac{8}{\sqrt{12}•4\sqrt{2}}$=$\frac{\sqrt{6}}{6}$.
∴异面直线BM与AC所成角的余弦值为$\frac{\sqrt{6}}{6}$.
故答案为:$\frac{{\sqrt{6}}}{6}$.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=($\frac{1}{2}$)x-x2的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)存在实数x,使不等式f(x)+|x+2|-m≤0有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-ax2,g(x)=f(x)+ax2-x.
(1)求函数f(x)的极值;
(2)设x1>x2>0,比较$\frac{{x}_{1}}{{x}_{1}^{2}+{x}_{2}^{2}}$-$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$与1的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$f(x)={log_{\frac{1}{2}}}({2-x})$的单调递增区间为(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆的”(  )
A.必要非充分条件B.充分非必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是非零向量,已知命题p:若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$;命题q:若$\overrightarrow{a}$•$\overrightarrow{b}$=0,$\overrightarrow{b}$•$\overrightarrow{c}$=0,则$\overrightarrow{a}$•$\overrightarrow{c}$=0,则下列命题中真命题是(  )
A.p∧qB.p∨qC.(¬p)∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆台的上下底面半径分别是2、4,且侧面面积等于两底面面积之和,求该圆台的母线长和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与f'(x)=0轴y的交点为R,与抛物线C的交点为O,且|QF|=$\frac{5}{4}$|RQ|.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F1与抛物线C的焦点重合,且离心率为$\frac{1}{2}$
(Ⅰ)求抛物线C和椭圆E的标准方程;
(Ⅱ)若椭圆E的长轴的两端点为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA,PB分别交于M,N两点.请问以MN为直径的圆是否经过x轴上的定点,若存在,求出定点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案