精英家教网 > 高中数学 > 题目详情
已知各项均为正数的数列{an}满足an+2+2
anan+2
=4an+1-an(n∈N*),且a1=1,a2=4.
(Ⅰ)证明:数列{
an
}是等差数列;
(Ⅱ)设bn=
2n+1
anan+1
的前项n和为Sn,求证:Sn<1.
考点:数列递推式,等差关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)通过已知条件,利用配方法推出等差数列的等差中项形式,判断数列是等差数列.
(Ⅱ)求出数列{an}的通项公式,然后利用裂项法求解Sn,即可推出所证明的不等式.
解答: 解:(Ⅰ)∵an+2+2
anan+2
+an=4an+1
且an>0,
(
an+2
+
an
)2=(2
an+1
)2

an+2
+
an
=2
an+1

{
an
}
是首项为
a1
=1
,公差为
a2
-
a1
=1
的等差数列. 
(Ⅱ)由(Ⅰ)得
an
=1+(n-1)×1=n,  an=n2

bn=
2n+1
n2(n+1)2
=
1
n2
-
1
(n+1)2

Sn=1-
1
22
+
1
22
-
1
32
+
+
1
n2
-
1
(n+1)2
=1-
1
(n+1)2
<1
点评:本题考查数列的递推关系式的应用,数列的求和以及数列是等差数列的判定,考查计算能力以及转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m是正整数,试证下列等式
(1)
π
sinmxdx=0   
(2)
π
cosmxdx=0  
(3)
π
sin2mxdx=π 
(4)
π
cos2mxdx=π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角θ的始边与x轴的非负半轴重合,终边过点P(-3,4),则sin(θ+
π
4
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“已知a、b∈N*,如果ab可被 5 整除,那么a、b 中至少有一个能被 5 整除”时,假设的内容应为(  )
A、a、b都能被5整除
B、a、b都不能被5整除
C、a、b不都能被5整除
D、a不能被5整除

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,记P:?x∈R,ex<kx+1.
(1)求函数f(x)的图象在点 P(0,f(0))处的切线的方程;
(2)若P为真,求实数k的取值范围;
(3)若[x]表示不大于x的最大整数,试证明不等式ln
n+1
n
1
n
(n∈N*),并求S=[
1
10
+
1
11
+
1
12
+…+
1
100
]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,且a1=3,{bn}为等比数列,数列{an+bn}的前三项依次为5,9,15,求:
(1)数列{an},{bn}的通项公式;
(2)数列{an+bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为(  )
A、560m3
B、540m3
C、520m3
D、500m3

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数y=
x+a
x+b
的导函数,及其单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,复数
i
i-2
在复平面内对应的点的坐标为(  )
A、(
1
5
2
5
B、(-
1
5
,-
2
5
C、(-
1
5
2
5
D、(
1
5
,-
2
5

查看答案和解析>>

同步练习册答案