精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2k2x+k,x∈[0,1].函数g(x)=3x2-2(k2+k+1)x+5,x∈[-1,0].存在x1∈[0,1],x2∈[-1,0],g(x2)=f(x1)成立,求k的取值范围.(g(x)的值域与f(x)的值域的交集非空.)
考点:二次函数在闭区间上的最值
专题:函数的性质及应用
分析:求出f(x)在[0,1]上的值域,g(x)在[-1,0]上的值域,由f(x)在[0,1]上的值域是g(x)在[-1,0]上的值域的子集说明对任意x1∈[0,1],存在x2∈[-1,0],g(x2)=f(x1)成立.
解答: 解:f(x)=2k2x+k,当x∈[0,1]时,函数单调递增,f(x)∈[k,2k2+k],
g(x)=3x2-2(k2+k+1)x+5,
当x∈[-1,0]时,g(x)∈[5,2k2+2k+10],
由对任意x1∈[0,1],存在x2∈[-1,0],g(x2)=f(x1)成立有
[k,2k2+k]⊆[5,2k2+2k+10],
5≤k
2k2+k≤2k2+2k+10
,解得k≥5,
则求k的取值范围为k≥5.
点评:本题考查了函数恒成立问题,考查了数学转化思想方法,关键是把问题转化为两函数在不同定义域内的值域间的关系问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知函数f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求实数t的取值范围;
(2)证明:
b-a
b
<ln
b
a
b-a
a
,其中0<a<b;
(3)设[x]表示不超过x的最大整数,证明:[ln(1+n)]≤[1+
1
2
+…+
1
n
]≤1+[lnn](n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线
x=
2
3
(t+
1
t
)
y=
3
4
(t-
1
t
)
 的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

求使函数y=-
3
2
cos(
1
2
x-
π
6
),x∈(-
π
2
2
)取得最大值、最小值时的自变量x的集合,并分别写出其最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α是第一象限角,且cosα=
5
13
,求:
2sin(α-3π)-3cos(-α)
4sin(α-5π)+9cos(3π+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2k2x+k,x∈[0,1],函数g(x)=3x2-2(k2+k+1)x+5,x∈[-1,0].对任意x1∈[0,1],存在x2∈[-1,0],g(x2)<f(x1)成立.求k的取值范围.(gmin(x)<fmin(x))

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边上一点坐标为P(-3t,4t)(t≠0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+lnx,g(x)=
1
2
bx2-2x+2,a,b∈R.
(Ⅰ)记函数h(x)=f(x)+g(x),当a=0,h(x)在(0,1)上有且只有一个极值点,求实数b的取值范围;
(Ⅱ)记函数F(x)=|f(x)|,若存在一条过原点的直线l与y=F(x)的图象有两个切点,求a的取值范围,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
sin
π
3
x,
x≤2011
f(x-4),x>2011
,则f(2012)=(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

同步练习册答案