精英家教网 > 高中数学 > 题目详情
18.已知i是虚数单位,若in=-i(n∈N*),则n的最小值是(  )
A.1B.2C.3D.4

分析 直接利用复数单位i的幂运算求解即可.

解答 解:因为i1=i,i2=-1,i3=-i,
所以in=-i(n∈N*),则n的最小值是3.
故选:C.

点评 本题考查复数的基本概念的应用,复数单位的幂运算,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知抛物线C:y2=4x上一点P,若以P为圆心,|PO|为半径作圆与抛物线的准线l交于不同的两点M,N,设准线l与x轴的交点为A,则$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的取值范围是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z满足方程$\frac{z+i}{z}$=i(i为虚数单位),则$\overline{z}$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)-x3]=2,则过点(1,2)且与曲线y=f(x)相切的曲线方程为y=3x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{ax}{1-{x}^{2}}$(a≠0)
(1)当a>0时,用定义证明:函数f(x)在(-1,1)上是增函数;
(2)若a<0,且函数f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上的值域为[-2,2],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且O为抛物线的顶点,抛物线的焦点F满足$\overrightarrow{\begin{array}{l}{FA}\end{array}}+\overrightarrow{FB}+\overrightarrow{FC}$=$\overrightarrow 0$,若BC边上的中线所在直线l的方程为mx+ny-m=0(m,n为常数且m≠0),记△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,则S12+S22+S32的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在大街上,随机调查339名成人,有关吸烟、不吸烟、患支气管炎、不患支气管炎的数据如右表:根据表中数据,在犯错误的概率不超过0.01 的前提下判断吸烟与患支气管炎是否有关?
患慢性气管炎未患慢性气管炎总计
吸烟43162205
不吸烟13121134
合计56283339
附:临界值表
P(K2>k00.050.0250.010 0.005 0.001
k03.8415.0246.635 7.87910.828 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某赛事组委会要为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件.制作一等奖和二等奖奖品所用原料完全相同,但工艺不同,故价格有所差异.现有甲、乙两家工厂可以制作奖品(一等奖、二等奖奖品均符合要求),甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费交贵,其具体收费情况如表:
奖品
收费(元/件)
工厂
一等奖奖品二等奖奖品
500400
800600
求组委会定做该工艺品至少需要花费多少元钱.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象过点P($\frac{π}{12}$,0),且图象上与P点最近的一个最高点坐标为($\frac{π}{3}$,5).
(1)求函数的解析式;
(2)指出函数的增区间;
(3)若将此函数的图象向左平移m(m>0)个单位,再向下平移2个单位长度得到g(x)图象正好关于y轴对称,求m的最小正值.

查看答案和解析>>

同步练习册答案