精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+alnx.
(1)当a=1时,求函数f(x)的单调区间和极值;
(2)若f(x)在[1,+∞)上是单调增函数,求实数a的取值范围.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的概念及应用
分析:(1)先求出函数的导数,得出f′(x)=2x+
1
x
>0,从而判断函数的单调性和极值,(2)由f′(x)=2x+
a
x
,且f(x)在[1,+∞)上是单调增函数,解不等式从而求出a的范围.
解答: 解:(1)a=1时:f(x)=x2+lnx,(x>0),
∴f′(x)=2x+
1
x
>0,
∴f(x)在(0,+∞)上单调递增,f(x)无极值;
(2)∵f′(x)=2x+
a
x

若f(x)在[1,+∞)上是单调增函数,
则:f′(1)=2+a≥0,
∴a≥-2.
点评:本题考察了函数的单调性,极值问题,导数的应用问题,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=(3-2n)(
1
2
n,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,己如AB∥DC,AB⊥AD,△SAD是正三角形,AD=AB=2DC=2,SC=
5
,E为AD的中点.
(Ⅰ)若F为SB的中点,求证:CF∥平面SAD:
(Ⅱ)平面SAD与平面SBC所成锐二面角的大小:
(Ⅲ)求点E到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1,F2在曲线C:
x=cosβ
y=sinβ
(β为参数)上,对应参数β分别为π和2π,动点M(x,y)到点F1,F2的距离之和为4.
(Ⅰ)求M的轨迹方程;
(Ⅱ)求M到直线
x
4
+
y
2
=1的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点.
(1)求证:MN∥平面PAD.
(2)求证:MN⊥CD.
(3)若PD与平面ABCD所成的角为45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,BC=AC,AD=BD,E是AB的中点.
(1)求证:AB⊥平面CDE;
(2)设G为△ADC的重心,F是线段AE上一点,且AF=2FE.求证:FG∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象在y轴上的截距为1,它在y轴右侧的第一最大值点和最小值点分别为(x0,2)和(x0+3π,-2).
(1)求f(x)的解析式;
(2)将f(x)图象上所有点的横坐标缩短到原来的
2
3
,然后再将所得图象向右平移
π
3
个单位长度,得到函数g(x)的图象,写出g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2x<8},B={x|x2-2x-8<0},C={x|a<x<a+1}.
(Ⅰ)求集合A∩B;
(Ⅱ)若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+
asinC
3
-b=0.
(Ⅰ)求A;
(Ⅱ)若△ABC的面积为
3
,求bsinB+csinC的最小值.

查看答案和解析>>

同步练习册答案