精英家教网 > 高中数学 > 题目详情
已知集合A={x|2x<8},B={x|x2-2x-8<0},C={x|a<x<a+1}.
(Ⅰ)求集合A∩B;
(Ⅱ)若C⊆B,求实数a的取值范围.
考点:集合的包含关系判断及应用
专题:集合
分析:(I)解指数不等式求出A,解二次不等式求出B,进而可得集合A∩B;
(Ⅱ)若C⊆B,则
a+1≤4
a≥-2
,解不等式组可得实数a的取值范围.
解答: 解:(Ⅰ)由2x<8,得2x<23,x<3.(3分)
解不等式x2-2x-8<0,得(x-4)(x+2)<0,
所以-2<x<4.(6分)
所以A={x|x<3},B={x|-2<x<4},
所以A∩B={x|-2<x<3}.(9分)
(Ⅱ)因为C⊆B,
所以
a+1≤4
a≥-2
(11分)
解得-2≤a≤3.
所以,实数a的取值范围是[-2,3].(13分)
点评:本题考查的知识点是集合的包含关系判断及应用,集合的交集运算,解不等式,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据已知条件求范围:
(1)求满足sinα>
3
2
的角α的取值范围;
(2)求满足sinα>cosα的角的α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+alnx.
(1)当a=1时,求函数f(x)的单调区间和极值;
(2)若f(x)在[1,+∞)上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC中点.
(1)求证:SD⊥平面ABC;
(2)若AB=BC,求证:BD⊥平面SAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
x
x
+x
y
xy-y2
-
x+
xy
+y
x
x
-y
y

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧面AA1B1B为菱形,且∠A1AB=60°,AC=BC,D是AB的中点.
(1)求证:平面A1DC⊥平面ABC;
(2)求证:BC1∥平面A1DC.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=
1
x
,(0<x<1)
x,(x≥1)
的图象,并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知反比例函数y=
1
x
的图象C是以x轴与y轴为渐近线的等轴双曲线.
(1)求双曲线C的顶点坐标与焦点坐标;
(2)设直线l过点P(0,4),且与双曲线C交于A、B两点,与x轴交于点Q.
①求A、B中点M的轨迹方程;
②当
PQ
1
QA
2
QB
,且λ12=-8时,求点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三角形内切圆的半径是高的
1
3
,若把这个结论推广到空间正四面体,则正四面体的内切球的半径是高的
 

查看答案和解析>>

同步练习册答案