精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,侧面AA1B1B为菱形,且∠A1AB=60°,AC=BC,D是AB的中点.
(1)求证:平面A1DC⊥平面ABC;
(2)求证:BC1∥平面A1DC.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)由已知条件得△A1AB为正三角形,从而得到AB⊥CD,进而得到AB⊥平面A1DC,由此能证明平面A1DC⊥平面ABC.
(2)连结C1A,设AC1∩A1C=E,连结DE.由三角形中位线定理得到DE∥BC1.由此能证明BC1∥平面A1DC.
解答: (1)证明:∵ABB1A1为菱形,且∠A1AB=60°,
∴△A1AB为正三角形.…(2分)
∵D是AB的中点,∴AB⊥A1D.                
∵AC=BC,D是AB的中点,∴AB⊥CD.…(4分)
∵A1D∩CD=D,∴AB⊥平面A1DC.…(6分)
∵AB?平面ABC,∴平面A1DC⊥平面ABC.…(8分)
(2)证明:连结C1A,设AC1∩A1C=E,连结DE.
∵三棱柱的侧面AA1C1C是平行四边形,∴E为AC1中点.…(10分)
在△ABC1中,又∵D是AB的中点,∴DE∥BC1. …(12分)
∵DE?平面A1DC,BC1不包含于平面A1DC,
∴BC1∥平面A1DC.…(14分)
点评:本题考查平面与平面垂直的证明,考查直线与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(π-α)=2,计算:
(1)
sinα+2cosα
sinα-2cosα

(2)
3sin2(π+α)-2cos2(π-α)+sin(2π-α)cos(π+α)
1+2sin2α+cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,BC=AC,AD=BD,E是AB的中点.
(1)求证:AB⊥平面CDE;
(2)设G为△ADC的重心,F是线段AE上一点,且AF=2FE.求证:FG∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 
1
2
[
2
sin(x-
π
4
)].
(1)求它的定义域和值域;
(2)求它的单调区间;
(3)判断它的奇偶性;
(4)判断它的周期性,如果是周期函数,求出它的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2x<8},B={x|x2-2x-8<0},C={x|a<x<a+1}.
(Ⅰ)求集合A∩B;
(Ⅱ)若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=pn+q(n∈N*,p>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3
(Ⅱ)若p=2,q=-1,求数列{bn}的前2m项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD的上底AD=8cm,下底BC=15cm,在边AB、CD上分别取E、F,使AE:EB=DF:FC=3:2,则EF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,点C是圆O上异于A、B的点,直线PC⊥平面ABC,E,F分别为PA,PC的中点.
(Ⅰ)记平面BEF与平面ABC的交线为l,试判断l与平面PAC的位置关系,并加以说明;
(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足
DQ
=
1
2
CP
,记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的锐角为α,二面角E-l-C的大小为β,
①求证:sinθ=sinα•sinβ.
②当点C为弧AB的中点时,PC=AB,求直线DQ与平面BEF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+
π
6
)(ω>0),把函数f(x)的图象向右平移
π
6
个单位长度,所得图象的一条对称轴方程是x=
π
3
,则ω的最小值是
 

查看答案和解析>>

同步练习册答案