精英家教网 > 高中数学 > 题目详情
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(Ⅰ)当b>0时,判断函数fn(x)在(0,+∞)上的单调性;
(Ⅱ)设n≥2,b=1,c=-1,证明:fn(x)在区间(
12
,1)
内存在唯一的零点;
(Ⅲ)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围.
分析:(Ⅰ)求导数,验证fn′(x)>0,即可得到结论;
(Ⅱ)将n>2,b=1,c=-1代入可得fn(x)=xn+x-1,结合指数函数的性质可得fn′(x)=nxn-1+1>0在(
1
2
,1)上恒成立,进而判断出函数在区间上单调,分析区间两端点的函数值符号关系,进而根据零点存在定理,可得答案;
(Ⅲ)将n=2,根据|f2(x1)-f2(x2)|≤4,分类讨论不同情况下b的取值范围,综合讨论结果,可得b的取值范围.
解答:(Ⅰ)解:∵fn(x)=xn+bx+c
fn′(x)=nxn-1+b
∵b>0,x>0,n∈N+
∴fn′(x)>0
∴函数fn(x)在(0,+∞)上的单调递增;
(Ⅱ)证明:由n>2,b=1,c=-1,得fn(x)=xn+x-1
∴fn′(x)=nxn-1+1>0在(
1
2
,1)
上恒成立,
∴fn(x)=xn+x-1在(
1
2
,1)
单调递增,
∵fn(1)=1>0,fn
1
2
)=(
1
2
)n-
1
2
<0,
∴fn(x)在区间(
1
2
,1)
内存在唯一的零点;
(Ⅲ)解:当n=2时,f2(x)=x2+bx+c
①当b≥2或b≤-2时,即-
b
2
≤-1或-
b
2
≥1,此时只需满足|f2(1)-f2(-1)|=|2b|≤4
∴-2≤b≤2,即b=±2;
②当0≤b<2时,即-1<-
b
2
≤0,此时只需满足f2(1)-f2(-
b
2
)≤4,即b2+4b-12≤0
解得:-6≤b≤2,即b∈[0,2)
③当-2<b<0时,即0<-
b
2
<1,此时只需满足f2(-1)-f2(-
b
2
)≤4,即b2-4b-12≤0
解得:-2≤b≤6,即b∈(-2,0)
综上所述:b∈[-2,2].
点评:本题考查零点存在定理,导数法判断函数的单调性,待定系数法求范围,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数fn(x)=xn+x-1,其中n∈N*,且n≥2,给出下列三个结论:
①函数f2(x)在区间(
1
2
,  1
)内不存在零点;
②函数f3(x)在区间(
1
2
,  1
)内存在唯一零点;
③?n∈N*,且n≥4,函数fn(x)在区间(
1
2
,  1)
内存在零点.
其中所有正确结论的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)设n>2,b=1,c=-1,证明:fn(x)在区间(
35
,1)内存在唯一的零点;
(2)设n为偶数,|fn(-1)|≤1,|fn(1)|≤1,求3b+c的最小值和最大值;
(3)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤9,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=1+
x
1!
+
x2
2!
+…+
xn
n!
,n∈N*

(1)证明:e-xf3(x)≤1;
(2)证明:当n为偶数时,函数y=fn(x)的图象与x轴无交点;当n为奇数时,函数y=fn(x)的图象与x轴有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市西城区(北区)高二(下)期末数学试卷(理科)(解析版) 题型:填空题

设函数fn(x)=xn+x-1,其中n∈N*,且n≥2,给出下列三个结论:
①函数f3(x)在区间(,1)内不存在零点;
②函数f4(x)在区间(,1)内存在唯一零点;
③设xn(n>4)为函数fn(x)在区间(,1)内的零点,则xn<xn+1
其中所有正确结论的序号为   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省淮安市盱眙县新海高级中学高三(上)10月学情调研数学试卷(理科)(解析版) 题型:解答题

设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)设n>2,b=1,c=-1,证明:fn(x)在区间(,1)内存在唯一的零点;
(2)设n为偶数,|fn(-1)|≤1,|fn(1)|≤1,求3b+c的最小值和最大值;
(3)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤9,求b的取值范围.

查看答案和解析>>

同步练习册答案