精英家教网 > 高中数学 > 题目详情

f(x)是定义在R上的函数,且f(x+3)≤f(x)+3,f(x+2)≥f(x)+2,f(1)=2,若an=f(n),(n∈N*),则a2011=________.

2012
分析:通过对已知不等式经过仿写得到两个左右两边相同函数但方向不同的不等式,利用f(x)≤f(x-6)+6,以及f(x)≥f(x-6)+6得到f(x)=f(x-6)+6,从而得到一个等差数列,利用等差数列的通项公式求出a2011
解答:∵f(x+3)≤f(x)+3
∴f(x)≤f(x-3)+3≤f(x-6)+6
∵f(x+2)≥f(x)+2
∴f(x)≥f(x-2)+2≥f(x-4)+4≥f(x-6)+6
∴f(x)=f(x-6)+6
∵an=f(n),
∴an-an-6=6
∵a1=2
∴{an}每隔6项取一项构成一个等差数列
∴a2011=a1+(336-1)×6=2012
故答案为2012
点评:解决题目中给了一些恒成立的等式或不等式,来判断函数的性质问题,一般通过仿写得到更多的等式和不等式,从中判断出函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且x≥0时,f(x)=(
1
2
x,函数f(x)的值域为集合A.
(Ⅰ)求f(-1)的值;
(Ⅱ)设函数g(x)=
-x2+(a-1)x+a
的定义域为集合B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,对任意实数m、n,都有f(m)•f(n)=f(m+n),且当x<0时,f(x)>1.
(1)证明:①f(0)=1;②当x>0时,0<f(x)<1;③f(x)是R上的减函数;
(2)设a∈R,试解关于x的不等式f(x2-3ax+1)•f(-3x+6a+1)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,满足f(x+2)=f(x),当x∈(-2,0)时,f(x)=2x-2,则f(-3)的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,且对任意实数x,恒有f(x+2)=-3f(x).当x∈[0,2]时,f(x)=2x-x2.则f(0)+f(-1)+f(-1)+…+f(-2014)=(  )
A、-
3
4
(1-31007
B、-
3
4
(1+31007
C、-
1
4
(1-
1
31007
D、-
1
4
(1+
1
31007

查看答案和解析>>

同步练习册答案