精英家教网 > 高中数学 > 题目详情
设向量
a
=(4cosα,sinα)
b
=(sinβ,4cosβ)
c
=(cosβ,-4sinβ)

(1)若
a
⊥(
b
-2
c
)
,求tan(α+β)的值
(2)若tanαtanβ=16,证明:
a
b
分析:(1)求出
b
-2
c
,通过
a
⊥(
b
-2
c
)
,数量积为0,求tan(α+β)的值
(2)通过tanαtanβ=16,化为弦函数,利用两个向量的坐标运算,然后证明
a
b
解答:解:(1)向量
a
=(4cosα,sinα)
b
=(sinβ,4cosβ)
c
=(cosβ,-4sinβ)

因为
a
⊥(
b
-2
c
)
,所以
b
-2
c
=(sinβ-2cosβ,4cosβ+8sinβ)

4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,
可得4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,
∴4sin(α+β)-8cos(α+β)=0
所以tan(α+β)=2.
(2)∵tanαtanβ=16,
sinαsinβ
cosαcosβ
=16,
即sinαsinβ=16cosαcosβ,
即sinα•sinβ-4cosα•4cosβ
所以
a
b
成立.命题得证
点评:本题考查平面向量的数量积的计算,两角和的正弦函数的应用,向量共线的坐标运算,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ)

(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)求|
b
+
c
|
的最大值;
(3)若tanαtanβ=16,求证:
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(4cosα sinα)
b
=(sinβ 4cosβ)
c
=(cosβ -4sinβ)

(1)求|
b
+
c
|的最大值;
(2)若
a
b
-2
c
垂直,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(4cosα,sinα)
b
=(sinβ,4cosβ),
c
=(cosβ-4sinβ)
,若
a
b
-
2c
垂直,则tan(α+β)的值为
2
2

查看答案和解析>>

科目:高中数学 来源:江苏 题型:解答题

设向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ)

(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)求|
b
+
c
|
的最大值;
(3)若tanαtanβ=16,求证:
a
b

查看答案和解析>>

同步练习册答案