精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}的前9项之和S9等于
99
99
分析:由等差数列的性质可求得a4,=13,a6=9,从而有a4+a6=22,由等差数列的前n项和公式即可求得答案.
解答:解:∵在等差数列{an}中,a1+a4+a7=39,a3+a6+a9=27,
∴a4=13,a6=9,
∴a4+a6=22,又a4+a6=a1+a9,,
∴数列{an}的前9项之和S9=
(a1+a9)×9
2
=
22×9
2
=99.
故答案为:99.
点评:本题考查等差数列的性质,掌握等差数列的性质与前n项和公式是解决问题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案