精英家教网 > 高中数学 > 题目详情
16.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
①第一天售出但第二天未售出的商品有16种;
②这三天售出的商品最少有29种.

分析 ①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数.

解答 解:①设第一天售出商品的种类集为A,第二天售出商品的种类集为B,第三天售出商品的种类集为C,
如图,

则第一天售出但第二天未售出的商品有16种;
②由①知,前两天售出的商品种类为19+13-3=29种,
当第三天售出的18种商品都是第一天或第二天售出的商品时,这三天售出的商品种类最少为29种.
故答案为:①16;②29.

点评 本题考查集合的包含关系及其应用,考查了集合中元素的个数判断,考查学生的逻辑思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(  )
A.$\frac{8}{15}$B.$\frac{1}{8}$C.$\frac{1}{15}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a>0,b>0,若关于x,y的方程组$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$无解,则a+b的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示:
(1)求函数f(x)的解析式;
(3)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(A)=1,a=$\sqrt{3}$,b=1,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数u、v满足不等式组$\left\{\begin{array}{l}{3u+2v-12≥0}\\{9u-4v+36≥0}\\{u-4≤0}\end{array}\right.$,则z=$\sqrt{\frac{{u}^{2}}{4}+\frac{{v}^{2}}{9}}$的最小值等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ax2-a-lnx,g(x)=$\frac{1}{x}$-$\frac{e}{{e}^{x}}$,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=lnx-x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x;
(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)是定在(0,+∞)上的单调函数,当n∈N*时,若f[f(n)]=3n,则f(8)=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

同步练习册答案