精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示:
(1)求函数f(x)的解析式;
(3)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(A)=1,a=$\sqrt{3}$,b=1,求△ABC的面积S.

分析 (1)由图象求出A、T,利用周期公式求出ω,把点$(\frac{π}{6},2)$代入解析式列出方程,结合条件求出φ的值;
(2)根据(1)化简f(A)=1,根据A的范围和特殊角的正弦值求出A,结合条件和正弦定理求出B,由内角和定理求出C,即可求出三角形的面积.

解答 解:(1)由图象可知A=2,﹍﹍﹍﹍﹍﹍﹍﹍﹍(1分),
$\frac{T}{4}=\frac{5}{12}π-\frac{π}{6}=\frac{π}{4}$,∴$T=π,即ω=\frac{2π}{π}=2$    ﹍﹍﹍﹍﹍﹍﹍﹍﹍(3分)
又∵函数图象过$(\frac{π}{6},2)$,
∴$2×\frac{π}{6}+φ=\frac{π}{2}+2kπ(k∈Z),且|φ|<\frac{π}{2}∴k=0,φ=\frac{π}{6}$,
∴$f(x)=2sin({2x+\frac{π}{6}})$﹍﹍﹍﹍﹍﹍﹍﹍﹍(6分)
(2)∵$f(A)=2sin({2A+\frac{π}{6}})=1$,∴$sin({2A+\frac{π}{6}})=\frac{1}{2}$,
∵0<A<π,∴$\frac{π}{6}<2A+\frac{π}{6}<\frac{13π}{6},即2A+\frac{π}{6}=\frac{5π}{6}$,
∴$A=\frac{π}{3}$﹍﹍﹍﹍﹍﹍﹍﹍﹍(8分)
在△ABC中,由正弦定理$\frac{b}{sinB}=\frac{a}{sinA},即\frac{1}{sinB}=\frac{{\sqrt{3}}}{{sin\frac{π}{3}}}$,
解得$sinB=\frac{1}{2},又∵b<a,B=\frac{π}{6}$,
∴$C=π-A-B=\frac{π}{2}$﹍﹍﹍﹍﹍﹍﹍﹍﹍(11分)
∴${S_{△ABC}}=\frac{1}{2}×1×\sqrt{3}=\frac{{\sqrt{3}}}{2}$         ﹍﹍﹍﹍﹍﹍﹍﹍﹍(12分)

点评 本题考查由y=Asin(ωx+φ)的部分图象利用待定系数法求其解析式,以及正弦定理的应用,注意内角的范围和边角关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.不等式$\sqrt{{a}^{2}-{x}^{2}}$<2x+a(a>0)的解集是(  )
A.{x|0<x≤a}B.{x|x>0或x<-$\frac{4}{5}$a}
C.{x|-$\frac{a}{2}$<x<a}D.{x|-a≤x<-$\frac{4}{5}$a或0<x≤a}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=sinx-$\sqrt{3}$cosx的图象可由函数y=sinx+$\sqrt{3}$cosx的图象至少向右平移$\frac{2π}{3}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个口袋内有大小相同标号不同的2个白球,3个黑球,从中任取一个球,则取到白球的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x>0,y>0.且2x-3=($\frac{1}{2}$)y,则$\frac{1}{x}$+$\frac{4}{y}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,则sin(x+y)=-$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
①第一天售出但第二天未售出的商品有16种;
②这三天售出的商品最少有29种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是2x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.6名学生中,3人只会独唱,3人只会跳舞,从6名学生中随机选取三人,则选取的这三名同学能排演一个由1人独唱,2人伴舞的节目的概率为(  )
A.$\frac{2}{5}$B.$\frac{9}{20}$C.$\frac{4}{5}$D.$\frac{9}{10}$

查看答案和解析>>

同步练习册答案