精英家教网 > 高中数学 > 题目详情
16.设x>0,y>0.且2x-3=($\frac{1}{2}$)y,则$\frac{1}{x}$+$\frac{4}{y}$的最小值为3.

分析 2x-3=($\frac{1}{2}$)y,可得x+y=3.再利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵2x-3=($\frac{1}{2}$)y,∴x-3=-y,即x+y=3.
又x>0,y>0.
则$\frac{1}{x}$+$\frac{4}{y}$=$\frac{1}{3}(x+y)$$(\frac{1}{x}+\frac{4}{y})$=$\frac{1}{3}(5+\frac{y}{x}+\frac{4x}{y})$$≥\frac{1}{3}$$(5+2\sqrt{\frac{y}{x}•\frac{4x}{y}})$=3,当且仅当y=2x=2时取等号.
∴$\frac{1}{x}$+$\frac{4}{y}$的最小值为3.
故答案为:3.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设抛物线$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C($\frac{7}{2}$p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3$\sqrt{2}$,则p的值为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=${2}^{\frac{4}{3}}$,b=${3}^{\frac{2}{3}}$,c=${25}^{\frac{1}{3}}$,则(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a>0,b>0,若关于x,y的方程组$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$无解,则a+b的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.时钟从6时走到9时,时针旋转了$-\frac{π}{2}$弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示:
(1)求函数f(x)的解析式;
(3)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(A)=1,a=$\sqrt{3}$,b=1,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数u、v满足不等式组$\left\{\begin{array}{l}{3u+2v-12≥0}\\{9u-4v+36≥0}\\{u-4≤0}\end{array}\right.$,则z=$\sqrt{\frac{{u}^{2}}{4}+\frac{{v}^{2}}{9}}$的最小值等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=lnx-x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x;
(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个口袋内有大小相同的4个白球,3个黑球,从中任意摸出三个球,其中只有一个白球的概率是$\frac{12}{35}$.

查看答案和解析>>

同步练习册答案